/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Module: FGJSBBase.cpp Author: Jon S. Berndt Date started: 07/01/01 Purpose: Encapsulates the JSBBase object ------------- Copyright (C) 2001 Jon S. Berndt (jon@jsbsim.org) ------------- This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. Further information about the GNU Lesser General Public License can also be found on the world wide web at http://www.gnu.org. FUNCTIONAL DESCRIPTION -------------------------------------------------------------------------------- HISTORY -------------------------------------------------------------------------------- 07/01/01 JSB Created %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INCLUDES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #define BASE #include "FGJSBBase.h" #include #include #include namespace JSBSim { static const char *IdSrc = "$Id: FGJSBBase.cpp,v 1.32 2011/10/22 14:38:30 bcoconni Exp $"; static const char *IdHdr = ID_JSBBASE; /*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% CLASS IMPLEMENTATION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/ #ifndef _MSC_VER char FGJSBBase::highint[5] = {27, '[', '1', 'm', '\0' }; char FGJSBBase::halfint[5] = {27, '[', '2', 'm', '\0' }; char FGJSBBase::normint[6] = {27, '[', '2', '2', 'm', '\0' }; char FGJSBBase::reset[5] = {27, '[', '0', 'm', '\0' }; char FGJSBBase::underon[5] = {27, '[', '4', 'm', '\0' }; char FGJSBBase::underoff[6] = {27, '[', '2', '4', 'm', '\0' }; char FGJSBBase::fgblue[6] = {27, '[', '3', '4', 'm', '\0' }; char FGJSBBase::fgcyan[6] = {27, '[', '3', '6', 'm', '\0' }; char FGJSBBase::fgred[6] = {27, '[', '3', '1', 'm', '\0' }; char FGJSBBase::fggreen[6] = {27, '[', '3', '2', 'm', '\0' }; char FGJSBBase::fgdef[6] = {27, '[', '3', '9', 'm', '\0' }; #else char FGJSBBase::highint[5] = {'\0' }; char FGJSBBase::halfint[5] = {'\0' }; char FGJSBBase::normint[6] = {'\0' }; char FGJSBBase::reset[5] = {'\0' }; char FGJSBBase::underon[5] = {'\0' }; char FGJSBBase::underoff[6] = {'\0' }; char FGJSBBase::fgblue[6] = {'\0' }; char FGJSBBase::fgcyan[6] = {'\0' }; char FGJSBBase::fgred[6] = {'\0' }; char FGJSBBase::fggreen[6] = {'\0' }; char FGJSBBase::fgdef[6] = {'\0' }; #endif const double FGJSBBase::radtodeg = 57.295779513082320876798154814105; const double FGJSBBase::degtorad = 0.017453292519943295769236907684886; const double FGJSBBase::hptoftlbssec = 550.0; const double FGJSBBase::psftoinhg = 0.014138; const double FGJSBBase::psftopa = 47.88; const double FGJSBBase::fpstokts = 0.592484; const double FGJSBBase::ktstofps = 1.68781; const double FGJSBBase::inchtoft = 0.08333333; const double FGJSBBase::in3tom3 = 1.638706E-5; const double FGJSBBase::m3toft3 = 1.0/(fttom*fttom*fttom); const double FGJSBBase::inhgtopa = 3386.38; const double FGJSBBase::fttom = 0.3048; double FGJSBBase::Reng = 1716.56; // Gas constant for Air (ft-lb/slug-R) double FGJSBBase::Rstar = 1545.348; // Universal gas constant double FGJSBBase::Mair = 28.9645; // const double FGJSBBase::SHRatio = 1.40; // Note that definition of lbtoslug by the inverse of slugtolb and not // to a different constant you can also get from some tables will make // lbtoslug*slugtolb == 1 up to the magnitude of roundoff. So converting from // slug to lb and back will yield to the original value you started with up // to the magnitude of roundoff. // Taken from units gnu commandline tool const double FGJSBBase::slugtolb = 32.174049; const double FGJSBBase::lbtoslug = 1.0/slugtolb; const double FGJSBBase::kgtolb = 2.20462; const double FGJSBBase::kgtoslug = 0.06852168; const string FGJSBBase::needed_cfg_version = "2.0"; const string FGJSBBase::JSBSim_version = "1.0 "__DATE__" "__TIME__; std::queue FGJSBBase::Messages; FGJSBBase::Message FGJSBBase::localMsg; unsigned int FGJSBBase::messageId = 0; short FGJSBBase::debug_lvl = 1; using std::cerr; using std::cout; using std::endl; //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::PutMessage(const Message& msg) { Messages.push(msg); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::PutMessage(const string& text) { Message msg; msg.text = text; msg.messageId = messageId++; msg.subsystem = "FDM"; msg.type = Message::eText; Messages.push(msg); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::PutMessage(const string& text, bool bVal) { Message msg; msg.text = text; msg.messageId = messageId++; msg.subsystem = "FDM"; msg.type = Message::eBool; msg.bVal = bVal; Messages.push(msg); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::PutMessage(const string& text, int iVal) { Message msg; msg.text = text; msg.messageId = messageId++; msg.subsystem = "FDM"; msg.type = Message::eInteger; msg.bVal = (iVal != 0); Messages.push(msg); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::PutMessage(const string& text, double dVal) { Message msg; msg.text = text; msg.messageId = messageId++; msg.subsystem = "FDM"; msg.type = Message::eDouble; msg.bVal = (dVal != 0.0); Messages.push(msg); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% int FGJSBBase::SomeMessages(void) { return !Messages.empty(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::ProcessMessage(void) { if (Messages.empty()) return; localMsg = Messages.front(); while (Messages.size() > 0) { switch (localMsg.type) { case JSBSim::FGJSBBase::Message::eText: cout << localMsg.messageId << ": " << localMsg.text << endl; break; case JSBSim::FGJSBBase::Message::eBool: cout << localMsg.messageId << ": " << localMsg.text << " " << localMsg.bVal << endl; break; case JSBSim::FGJSBBase::Message::eInteger: cout << localMsg.messageId << ": " << localMsg.text << " " << localMsg.iVal << endl; break; case JSBSim::FGJSBBase::Message::eDouble: cout << localMsg.messageId << ": " << localMsg.text << " " << localMsg.dVal << endl; break; default: cerr << "Unrecognized message type." << endl; break; } Messages.pop(); if (Messages.size() > 0) localMsg = Messages.front(); else break; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FGJSBBase::Message* FGJSBBase::ProcessNextMessage(void) { if (Messages.empty()) return NULL; localMsg = Messages.front(); Messages.pop(); return &localMsg; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% void FGJSBBase::disableHighLighting(void) { highint[0]='\0'; halfint[0]='\0'; normint[0]='\0'; reset[0]='\0'; underon[0]='\0'; underoff[0]='\0'; fgblue[0]='\0'; fgcyan[0]='\0'; fgred[0]='\0'; fggreen[0]='\0'; fgdef[0]='\0'; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% string FGJSBBase::CreateIndexedPropertyName(const string& Property, int index) { std::ostringstream buf; buf << Property << '[' << index << ']'; return buf.str(); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% double FGJSBBase::GaussianRandomNumber(void) { static double V1, V2, S; static int phase = 0; double X; if (phase == 0) { V1 = V2 = S = X = 0.0; do { double U1 = (double)rand() / RAND_MAX; double U2 = (double)rand() / RAND_MAX; V1 = 2 * U1 - 1; V2 = 2 * U2 - 1; S = V1 * V1 + V2 * V2; } while(S >= 1 || S == 0); X = V1 * sqrt(-2 * log(S) / S); } else X = V2 * sqrt(-2 * log(S) / S); phase = 1 - phase; return X; } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% double FGJSBBase::VcalibratedFromMach(double mach, double p, double psl, double rhosl) { double pt,A; if (mach < 0) mach=0; if (mach < 1) //calculate total pressure assuming isentropic flow pt=p*pow((1 + 0.2*mach*mach),3.5); else { // shock in front of pitot tube, we'll assume its normal and use // the Rayleigh Pitot Tube Formula, i.e. the ratio of total // pressure behind the shock to the static pressure in front of // the normal shock assumption should not be a bad one -- most supersonic // aircraft place the pitot probe out front so that it is the forward // most point on the aircraft. The real shock would, of course, take // on something like the shape of a rounded-off cone but, here again, // the assumption should be good since the opening of the pitot probe // is very small and, therefore, the effects of the shock curvature // should be small as well. AFAIK, this approach is fairly well accepted // within the aerospace community // The denominator below is zero for Mach ~ 0.38, for which // we'll never be here, so we're safe pt = p*166.92158*pow(mach,7.0)/pow(7*mach*mach-1,2.5); } A = pow(((pt-p)/psl+1),0.28571); return sqrt(7*psl/rhosl*(A-1)); } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% double FGJSBBase::MachFromVcalibrated(double vcas, double p, double psl, double rhosl) { double pt = p + psl*(pow(1+vcas*vcas*rhosl/(7.0*psl),3.5)-1); if (pt/p < 1.89293) return sqrt(5.0*(pow(pt/p, 0.2857143) -1)); // Mach < 1 else { // Mach >= 1 double mach = sqrt(0.77666*pt/p); // Initial guess is based on a quadratic approximation of the Rayleigh formula double delta = 1.; double target = pt/(166.92158*p); int iter = 0; // Find the root with Newton-Raphson. Since the differential is never zero, // the function is monotonic and has only one root with a multiplicity of one. // Convergence is certain. while (delta > 1E-5 && iter < 10) { double m2 = mach*mach; // Mach^2 double m6 = m2*m2*m2; // Mach^6 delta = mach*m6/pow(7.0*m2-1.0,2.5) - target; double diff = 7.0*m6*(2.0*m2-1)/pow(7.0*m2-1.0,3.5); // Never zero when Mach >= 1 mach -= delta/diff; iter++; } return mach; } } //%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% } // namespace JSBSim