src/AIModel/AIAircraft.cxx src/ATC/AILocalTraffic.cxx
src/FDM/flight.cxx src/FDM/flight.hxx src/FDM/groundcache.cxx
src/FDM/groundcache.hxx src/Main/fg_init.cxx src/Main/main.cxx
src/Scenery/hitlist.cxx src/Scenery/hitlist.hxx
src/Scenery/scenery.cxx src/Scenery/scenery.hxx
Make use of the attached SGMaterial reference userdata on scenegraph
leafs. Make the SGMaterial pointer available to the ground query
routines.
Take any arbitrary vector (not necessarily vertical) and intersect it with
the current set of loaded terrain tiles. Returns lon, lat, elev. This
could have a multitude of useful applications such as testing line of sight
between two objects, faking a terrain following lookahead radar system,
virtual georeferencing, etc.
* Use "const string&" rather than "string" in function calls when appropriate.
* Use "const Point3D&" instead of "Pint3D" in function calls when appropriate.
* Improved course calculation in calc_gc_course_dist()
* Safer thread handling code.
Vassilii Khachaturov:
Dont use "const Point3D&" for return types unless you're absolutely sure.
Erik Hofman:
* Use SGD_(2)PI(_[24]) as defined in simgear/constants.h rather than
calculating it by hand every time.
I had a quick view over the ssgBase::ref() calls in flightgear.
I made them all symmetric and used ssgDeRefDelete to dereference them.
This has the basic advantage that ssgDeRefDelete additionaly deletes the
memory instead of just decrementing the reference cound without deletion ...
This includes an incorrect deref instead of a ssgDeRefDelete in the placement
transform registration I introduced earlier. I believe that this causes the
problems with long flights (unverified, but with a big propability).
I have prepared a patch that:
- Introduces a FGTileMgr::scenery_available method which asks the tilemanager
if scenery for a given range around a lat/lon pair is already loaded and make
use of that method at some -9999 meter checks.
- Introduces a FGScenery::get_elevation_m method which queries the altitude at
a given position. In constrast to the groundcache functions this is the best
choice if you ask for one *single* altitude value. Make use of that thing in
AI/ATC classes and for the current views ground level. At the current views
part the groundcache is reused if possible.
- The computation of the 'current groundlevel' is no longer done on the
tilemanagers update since the required functions are now better seperated.
Alltogether it eliminates somehow redundant terrain level computations which
are now superseeded by that more finegrained functions and the existence of
the groundcache. Additionally it introduces an api to commonly required
functions which was very complex to do prevously.
I have done a patch to eliminate the jitter of 3D-objects near the viewpoint
(for example 3D cockpit objects).
The problem is the roundoff accuracy of the float values used in the
scenegraph together with the transforms of the eyepoint relative to the
scenery center.
The solution will be to move the scenery center near the view point.
This way floats relative accuracy is enough to show a stable picture.
To get that right I have introduced a transform node for the scenegraph which
is responsible for that shift and uses double values as long as possible.
The scenery subsystem now has a list of all those transforms required to place
objects in the world and will tell all those transforms that the scenery
center has changed when the set_scenery_center() of the scenery subsystem is
called.
The problem was not solvable by SGModelPlacement and SGLocation, since not all
objects, especially the scenery, are placed using these classes.
The first approach was to have the scenery center exactly at the eyepoint.
This works well for the cockpit.
But then the ground jitters a bit below the aircraft. With our default views
you can't see that, but that F-18 has a camera view below the left engine
intake with the nose gear and the ground in its field of view, here I could
see that.
Having the scenery center constant will still have this roundoff problems, but
like it is now too, the roundoff error here is exactly the same in each
frame, so you will not notice any jitter.
The real solution is now to keep the scenery center constant as long as it is
in a ball of 30m radius around the view point. If the scenery center is
outside this ball, just put it at the view point.
As a sideeffect of now beeing able to switch the scenery center in the whole
scenegraph with one function call, I was able to remove a one half of a
problem when switching views, where the scenery center was far off for one or
two frames past switching from one view to the next. Also included is a fix
to the other half of this problem, where the view position was not yet copied
into a view when it is switched (at least under glut). This was responsible
for the 'Error: ...' messages of the cloud subsystem when views were
switched.
are now working. A runway light is defined by a point and a direction. The
point and direction are combined with the local up vector to create a small
triangle orthogonal to the direction. The two ficticous corners of the
triangle are given an alpha value of zero, the orignal corner is given an
alpha of one. The triangle is drawn in glPolygonMode(GL_FRONT, GL_POINT)
mode which means only the corner points are drawn, and since two have alpha=0
only the original point is drawn. This is a long way to go to draw a point,
but it ensures that the point is only visible within 90 degrees of the light
direction, behind the light it is not visible. This is still a long way
to get to drawing a point, but we use an environement map, with the direction
vector as the normal to mimic a light that is brightest when viewed head
on and dimmest when viewed perpendicularly or disappears when viewed from
behind.
- warning, there is a bug in how the current runway light direction vector
is calculated which will adversely effect runway lighting. The airports
should be regenerated in order to fix this problem.
- changed FGSubsystem::update(int) to
FGSubsystem::update(delta_time_sec); the argument is now delta time
in seconds rather than milliseconds
- added FGSubsystem::suspend(), FGSubsystem::suspend(bool),
FGSubsystem::resume(), and FGSubsystem::is_suspended(), all with
default implementations; is_suspended takes account of the master
freeze as well as the subsystem's individual suspended state
- the FDMs now use the delta time argument the same as the rest of
FlightGear; formerly, main.cxx made a special case and passed a
multiloop argument
- FDMs now calculate multiloop internally instead of relying on
main.cxx
There are probably some problems -- I've done basic testing with the
major FDMs and subsystems, but we'll probably need a few weeks to
sniff out bugs.
(i.e. multiloop). Most subsystems currently ignore the parameter, but
eventually, it will allow all subsystems to update by time rather than
by framerate.
fix startup sequence problems where we initialize the FDM before we know
the desired starting altitude.
These changes delay fdm initialization until the local tile has been loaded
and we can do a real intersection and find the true ground elevation.
In order to do this, I depend more on the property manager as glue, rather
than the FGInterface.
There are some glitches still when switching to a new airport or reseting
the sim. I will work on addressing these, but I need to commit the changes
so far to keep in sync with other developers.