Changes
=======
- shadowvolume.cxx, renderer.cxx :
- reduced the polygon offset a bit to eliminate some artifact ;
- changed again the cleanup code for objects inside a tile because it could crash on rare occasion ;
- the culling of shadow casters has been rewritten to traverse the scene graph, it should be
a bit faster when there is a lot of objects ;
- the range selector was not correctly handled, sometimes the wrong LOD was casting shadows.
- added the option to display aircraft's transparent objects after the shadows, this will
reduce the problem of shadows being hidden by the transparent object (propeller disk,
rotor, etc). A side effect is that aircraft's transparent objects won't receive shadows
anymore. This is usually a good thing except when the aircraft use a 'transparent'
texture where it should not. A transparent texture in the plib context is a texture
with an alpha channel or a material with alpha <= 0.99.
- model.cxx, animation.cxx, shadowvolume.cxx :
- added an optional <condition> under the <noshadow> animation
- tower.cxx
- correct a rare bug where all occurences of the aircraft are not deleted from the
departure list causing a crash in FGTower::CheckDepartureList function.
Changes
=======
New volumetric shadows for FlightGear.
There is now two new checkboxes in the rendering dialog to enable/disable shadows
for the user aircraft and for static scenery objects (ie those defined in the .stg files).
AI and random objects are not handled for the moment.
known bugs
==========
- ghost objects
Changes
=======
- correct the transparency probleme when old 3d clouds were enabled
(rendering context with an alpha channel)
- changed rain cone orientation, it can now be viewed from helicopter or chase
view (still not tower view)
- clouds are a bit more yellow/red at dawn/dusk
- weather data is now correctly propagated to the interpolator, this correct
visibility, wind, etc
- the 'metar' weather scenario now immedialty reuse the real metar data
- real metar no more overwrite custom weather scenario
This is another update for the cloud code, a lot of lines but this time I have started to add the doxygen doc.
Misc
====
- corrected a bug when RTT is not available, the current rendering context was
altered
- if RTT is not available then 3d clouds are not drawn at all
- impostors lighting is now recomputed when the sun changes position
- distant objects are no more seen in front of clouds
- blending of distant clouds is a bit better now
- litle optimization of code (uses a less cpu time)
- use layer wind speed and direction (no more hardcoded wind)
- fov is no more hardcoded
Changes
=======
- clouds (cu only) are dissipating/reforming (experimental)
- compute a turbulence factor that depends on surrounding clouds and type of
clouds (experimental)
- clouds shapes are defined in cloudlayers.xml
- type of clouds present in a layer is also defined in cloudlayers.xml
- cloud layers are generated from metar and other misc. data (in progress)
- added a rain effect around the viewer (enabled in the rendering dialog and
when the metar property says so)
- added a lightning effect (enabled in the rendering dialog) : cb clouds spawn
new lightnings
- added a dialog to select from different weather source : metar/property,
a 'fair weather' environment and a 'thunderstorm' environment.
I have done a patch to eliminate the jitter of 3D-objects near the viewpoint
(for example 3D cockpit objects).
The problem is the roundoff accuracy of the float values used in the
scenegraph together with the transforms of the eyepoint relative to the
scenery center.
The solution will be to move the scenery center near the view point.
This way floats relative accuracy is enough to show a stable picture.
To get that right I have introduced a transform node for the scenegraph which
is responsible for that shift and uses double values as long as possible.
The scenery subsystem now has a list of all those transforms required to place
objects in the world and will tell all those transforms that the scenery
center has changed when the set_scenery_center() of the scenery subsystem is
called.
The problem was not solvable by SGModelPlacement and SGLocation, since not all
objects, especially the scenery, are placed using these classes.
The first approach was to have the scenery center exactly at the eyepoint.
This works well for the cockpit.
But then the ground jitters a bit below the aircraft. With our default views
you can't see that, but that F-18 has a camera view below the left engine
intake with the nose gear and the ground in its field of view, here I could
see that.
Having the scenery center constant will still have this roundoff problems, but
like it is now too, the roundoff error here is exactly the same in each
frame, so you will not notice any jitter.
The real solution is now to keep the scenery center constant as long as it is
in a ball of 30m radius around the view point. If the scenery center is
outside this ball, just put it at the view point.
As a sideeffect of now beeing able to switch the scenery center in the whole
scenegraph with one function call, I was able to remove a one half of a
problem when switching views, where the scenery center was far off for one or
two frames past switching from one view to the next. Also included is a fix
to the other half of this problem, where the view position was not yet copied
into a view when it is switched (at least under glut). This was responsible
for the 'Error: ...' messages of the cloud subsystem when views were
switched.
I have added a --aspect-ratio-multiplier=x.xx option to give some end user
control over the aspect ratio. (This may seem a little strange, but it's a
building block towards the capability of doing asymmetric view frustums in
FlightGear.)
ssgSetNearFar(). This by default creates a symmetric view frustum which is
typically what an application wants.
However, to get control of the view frustum in order to build support for
asymmetric view frustums, we need to wrap these calls with a bit of our own
logic.
This set of changes wraps all calls to ssgSetFOV() and ssgSetNearFar() with
FGRenderer methods.
I also standardized how the FGRenderer class is handled in globals.[ch]xx.
This led to some cascading changes in a variety of source files.
As I was working my way through the changes, I fixed a few warnings along
the way.
I've finished the emigration of the radiostack, and I've also removed it
completely. It turned out that the comm radio is completely implemented in
the ATC subsystem. I've changed the affected ATC files to point
to /instrumentation/com, but I guess that the maintainer of the ATC code
should decide wether to make it configureable, and how.
I also had to change some files in Network and Main. The changes in network
should be obvious, but the changes in Main were a bit suspect. The files
included radiostack.hxx, but they weren't directly depending on
radiostack-hxx. They were depending on other files that were included by
radiostack.hxx. I got it to compile, but I'm not sure if I included the
correct directly depending file.
For the data directory I changed every occurrence of /radios/
with /instrumentation/ with this simple one-liner that I found on the net:
find -name '*.xml' -type f | xargs perl -pi -e
's/\/radios\//\/instrumentation\//g'
Instead of me sending all the files that got changed by this I suggest that
you execute the one-liner yourself. Of course I can not guarantee that this
will work perfectly, but I considered hand editing to be not an option (I'm
lazy). I don't want to test every aircraft to see if everything still works,
I think it's better to wait and see if anyone complaints about broken nav
radios/instruments.
erly known as trRenderFrame) is now declared as a NULL function pointer and ass
ignment of the proper function is now done in FlightGear (jpgRenderFrame=FGRend
erer::update).
a working state. I still see an anomoly when taking a screen shot from inside
a 3d cockpit, but external (chase/tower) views seem to work well. I also
added a property to control how many screen-res tiles are generated in the
output. Theoretically, you can now generate unlimited resolution screen shots,
or limited only by your disk space and patience.
Today I successfully generated a 20*1024 x 20*768 (20480x15360) resolution
screen shot. If you rendered that at 100 dpi it would cover a poster of
about 17 feet by 12.8 feet.
Good luck trying to display something that big or convert it to anything
useful on a typical PC. :-)
split). If SimGear is configured --with-jpeg-factory, then FlightGear
will fail to build unless this function is present.
FIXME: this is very messy architecturally -- find a better solution,
like passing this explicitly as a callback to the libJPEG class
(SimGear should not have a dependency on FlightGear).
Split up main.cxx into a program manegement part (which remains in
main.cxx) and a render part (the new renderer.?xx files). Also turn
the renderer into a small class of it's own. At this time not really
exctining because most of the stuff is still global, but it allows us
to slowly migrate some of the global definitions into the new class.
The FGRenderer class is now managed by globals, so to get the renderer
just call gloabals->get_renderer()
At some pijt it might be a good idea to also turn the remaining code in
main into a class of it's own. With a bit of luck we end up with a more
robust, and better maintainable code.