1
0
Fork 0

Moved wgs_84 time and distance calc routines to fg_geodesy.[ch]xx

This commit is contained in:
curt 1999-10-14 19:31:55 +00:00
parent f565b1fdbe
commit 229ba460d8

View file

@ -952,7 +952,8 @@ void TgtAptDialog_OK (puObject *)
MakeTargetDistanceStr( APData, distance );
// This changes the AutoPilot Heading
// following cast needed
ApHeadingDialogInput->setValue ((float)APData->TargetHeading );
ApHeadingDialogInput->
setValue((float)APData->TargetHeading);
// Force this !
APData->waypoint_hold = true ;
APData->heading_hold = true;
@ -1688,216 +1689,3 @@ static double LinearExtrapolate( double x, double x1, double y1, double x2, doub
return ( y );
};
/* Direct and inverse distance functions */
/** Proceedings of the 7th International Symposium on Geodetic
Computations, 1985
"The Nested Coefficient Method for Accurate Solutions of Direct
and
Inverse Geodetic Problems With Any Length"
Zhang Xue-Lian
pp 747-763
*/
/* modified for FlightGear to use WGS84 only Norman Vine */
//#include "dstazfns.h"
#include <math.h>
#define GEOD_INV_PI (3.14159265358979323846)
/* s == distance */
/* az = azimuth */
/* for WGS_84 a = 6378137.000, rf = 298.257223563; */
static double M0( double e2 )
{ //double e4 = e2*e2;
return GEOD_INV_PI*(1.0 - e2*( 1.0/4.0 + e2*( 3.0/64.0 + e2*(5.0/256.0) )))/2.0;
}
/* s == distance */
int geo_direct_wgs_84 ( double alt, double lat1, double lon1, double az1, double s,
double *lat2, double *lon2, double *az2 )
{
double a = 6378137.000, rf = 298.257223563;
double RADDEG = (GEOD_INV_PI)/180.0, testv = 1.0E-10;
double f = ( rf > 0.0 ? 1.0/rf : 0.0 );
double b = a*(1.0-f), e2 = f*(2.0-f);
double phi1 = lat1*RADDEG, lam1 = lon1*RADDEG;
double sinphi1 = sin(phi1), cosphi1 = cos(phi1);
double azm1 = az1*RADDEG;
double sinaz1 = sin(azm1), cosaz1 = cos(azm1);
if( fabs(s) < 0.01 ) /* distance < centimeter => congruency */
{ *lat2 = lat1;
*lon2 = lon1;
*az2 = 180.0 + az1;
if( *az2 > 360.0 ) *az2 -= 360.0;
return 0;
}
else
if( cosphi1 ) /* non-polar origin */
{ /* u1 is reduced latitude */
double tanu1 = sqrt(1.0-e2)*sinphi1/cosphi1;
double sig1 = atan2(tanu1,cosaz1);
double cosu1 = 1.0/sqrt( 1.0 + tanu1*tanu1 ), sinu1 = tanu1*cosu1;
double sinaz = cosu1*sinaz1, cos2saz = 1.0-sinaz*sinaz;
double us = cos2saz*e2/(1.0-e2);
/* Terms */
double ta = 1.0+us*(4096.0+us*(-768.0+us*(320.0-175.0*us)))/16384.0,
tb = us*(256.0+us*(-128.0+us*(74.0-47.0*us)))/1024.0,
tc = 0;
/* FIRST ESTIMATE OF SIGMA (SIG) */
double first = s/(b*ta); /* !!*/
double sig = first;
double c2sigm, sinsig,cossig, temp,denom,rnumer, dlams, dlam;
do
{ c2sigm = cos(2.0*sig1+sig);
sinsig = sin(sig); cossig = cos(sig);
temp = sig;
sig = first +
tb*sinsig*(c2sigm+tb*(cossig*(-1.0+2.0*c2sigm*c2sigm) -
tb*c2sigm*(-3.0+4.0*sinsig*sinsig)
*(-3.0+4.0*c2sigm*c2sigm)/6.0)
/4.0);
}
while( fabs(sig-temp) > testv);
/* LATITUDE OF POINT 2 */
/* DENOMINATOR IN 2 PARTS (TEMP ALSO USED LATER) */
temp = sinu1*sinsig-cosu1*cossig*cosaz1;
denom = (1.0-f)*sqrt(sinaz*sinaz+temp*temp);
/* NUMERATOR */
rnumer = sinu1*cossig+cosu1*sinsig*cosaz1;
*lat2 = atan2(rnumer,denom)/RADDEG;
/* DIFFERENCE IN LONGITUDE ON AUXILARY SPHERE (DLAMS ) */
rnumer = sinsig*sinaz1;
denom = cosu1*cossig-sinu1*sinsig*cosaz1;
dlams = atan2(rnumer,denom);
/* TERM C */
tc = f*cos2saz*(4.0+f*(4.0-3.0*cos2saz))/16.0;
/* DIFFERENCE IN LONGITUDE */
dlam = dlams-(1.0-tc)*f*sinaz*(sig+tc*sinsig*
(c2sigm+
tc*cossig*(-1.0+2.0*
c2sigm*c2sigm)));
*lon2 = (lam1+dlam)/RADDEG;
if(*lon2 > 180.0 ) *lon2 -= 360.0;
if(*lon2 < -180.0 ) *lon2 += 360.0;
/* AZIMUTH - FROM NORTH */
*az2 = atan2(-sinaz,temp)/RADDEG;
if( fabs(*az2) < testv ) *az2 = 0.0;
if( *az2 < 0.0) *az2 += 360.0;
return 0;
}
else /* phi1 == 90 degrees, polar origin */
{ double dM = a*M0(e2) - s;
double paz = ( phi1 < 0.0 ? 180.0 : 0.0 );
return geo_direct_wgs_84( alt, 0.0, lon1, paz, dM,lat2,lon2,az2 );
}
}
int geo_inverse_wgs_84( double alt, double lat1, double lon1, double lat2,
double lon2, double *az1, double *az2, double *s )
{
double a = 6378137.000, rf = 298.257223563;
int iter=0;
double RADDEG = (GEOD_INV_PI)/180.0, testv = 1.0E-10;
double f = ( rf > 0.0 ? 1.0/rf : 0.0 );
double b = a*(1.0-f), e2 = f*(2.0-f);
double phi1 = lat1*RADDEG, lam1 = lon1*RADDEG;
double sinphi1 = sin(phi1), cosphi1 = cos(phi1);
double phi2 = lat2*RADDEG, lam2 = lon2*RADDEG;
double sinphi2 = sin(phi2), cosphi2 = cos(phi2);
if( (fabs(lat1-lat2) < testv &&
( fabs(lon1-lon2) < testv) || fabs(lat1-90.0) < testv ) )
{ /* TWO STATIONS ARE IDENTICAL : SET DISTANCE & AZIMUTHS TO ZERO */
*az1 = 0.0; *az2 = 0.0; *s = 0.0;
return 0;
} else
if( fabs(cosphi1) < testv ) /* initial point is polar */
{
int k = geo_inverse_wgs_84( alt, lat2,lon2,lat1,lon1, az1,az2,s );
b = *az1; *az1 = *az2; *az2 = b;
return 0;
} else
if( fabs(cosphi2) < testv ) /* terminal point is polar */
{
int k = geo_inverse_wgs_84( alt, lat1,lon1,lat1,lon1+180.0,
az1,az2,s );
*s /= 2.0;
*az2 = *az1 + 180.0;
if( *az2 > 360.0 ) *az2 -= 360.0;
return 0;
} else /* Geodesic passes through the pole (antipodal) */
if( (fabs( fabs(lon1-lon2) - 180 ) < testv) &&
(fabs(lat1+lat2) < testv) )
{
double s1,s2;
geo_inverse_wgs_84( alt, lat1,lon1, lat1,lon2, az1,az2, &s1 );
geo_inverse_wgs_84( alt, lat2,lon2, lat1,lon2, az1,az2, &s2 );
*az2 = *az1;
*s = s1 + s2;
return 0;
} else /* antipodal and polar points don't get here */
{
double dlam = lam2 - lam1, dlams = dlam;
double sdlams,cdlams, sig,sinsig,cossig, sinaz,
cos2saz, c2sigm;
double tc,temp, us,rnumer,denom, ta,tb;
double cosu1,sinu1, sinu2,cosu2;
/* Reduced latitudes */
temp = (1.0-f)*sinphi1/cosphi1;
cosu1 = 1.0/sqrt(1.0+temp*temp);
sinu1 = temp*cosu1;
temp = (1.0-f)*sinphi2/cosphi2;
cosu2 = 1.0/sqrt(1.0+temp*temp);
sinu2 = temp*cosu2;
do {
sdlams = sin(dlams), cdlams = cos(dlams);
sinsig = sqrt(cosu2*cosu2*sdlams*sdlams+
(cosu1*sinu2-sinu1*cosu2*cdlams)*
(cosu1*sinu2-sinu1*cosu2*cdlams));
cossig = sinu1*sinu2+cosu1*cosu2*cdlams;
sig = atan2(sinsig,cossig);
sinaz = cosu1*cosu2*sdlams/sinsig;
cos2saz = 1.0-sinaz*sinaz;
c2sigm = (sinu1 == 0.0 || sinu2 == 0.0 ? cossig :
cossig-2.0*sinu1*sinu2/cos2saz);
tc = f*cos2saz*(4.0+f*(4.0-3.0*cos2saz))/16.0;
temp = dlams;
dlams = dlam+(1.0-tc)*f*sinaz*
(sig+tc*sinsig*
(c2sigm+tc*cossig*(-1.0+2.0*c2sigm*c2sigm)));
if (fabs(dlams) > GEOD_INV_PI && iter++ > 50)
return iter;
} while ( fabs(temp-dlams) > testv);
us = cos2saz*(a*a-b*b)/(b*b); /* !! */
/* BACK AZIMUTH FROM NORTH */
rnumer = -(cosu1*sdlams);
denom = sinu1*cosu2-cosu1*sinu2*cdlams;
*az2 = atan2(rnumer,denom)/RADDEG;
if( fabs(*az2) < testv ) *az2 = 0.0;
if(*az2 < 0.0) *az2 += 360.0;
/* FORWARD AZIMUTH FROM NORTH */
rnumer = cosu2*sdlams;
denom = cosu1*sinu2-sinu1*cosu2*cdlams;
*az1 = atan2(rnumer,denom)/RADDEG;
if( fabs(*az1) < testv ) *az1 = 0.0;
if(*az1 < 0.0) *az1 += 360.0;
/* Terms a & b */
ta = 1.0+us*(4096.0+us*(-768.0+us*(320.0-175.0*us)))/
16384.0;
tb = us*(256.0+us*(-128.0+us*(74.0-47.0*us)))/1024.0;
/* GEODETIC DISTANCE */
*s = b*ta*(sig-tb*sinsig*
(c2sigm+tb*(cossig*(-1.0+2.0*c2sigm*c2sigm)-tb*
c2sigm*(-3.0+4.0*sinsig*sinsig)*
(-3.0+4.0*c2sigm*c2sigm)/6.0)/
4.0));
return 0;
}
}