1
0
Fork 0

Sync. with JSBSim CVS.

This commit is contained in:
Erik Hofman 2010-08-03 09:51:13 +02:00
parent 61a81e855d
commit 0d0751e37c
11 changed files with 413 additions and 189 deletions

View file

@ -71,7 +71,7 @@ using namespace std;
namespace JSBSim {
static const char *IdSrc = "$Id: FGFDMExec.cpp,v 1.78 2010/04/12 12:25:19 jberndt Exp $";
static const char *IdSrc = "$Id: FGFDMExec.cpp,v 1.79 2010/07/25 13:52:20 jberndt Exp $";
static const char *IdHdr = ID_FDMEXEC;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -665,10 +665,10 @@ bool FGFDMExec::LoadModel(string model, bool addModelToPath)
modelLoaded = true;
MassBalance->Run(); // Update all mass properties for the report.
MassBalance->GetMassPropertiesReport();
if (debug_lvl > 0) {
MassBalance->Run(); // Update all mass properties for the report.
MassBalance->GetMassPropertiesReport();
cout << endl << fgblue << highint
<< "End of vehicle configuration loading." << endl
<< "-------------------------------------------------------------------------------"

View file

@ -245,6 +245,13 @@ public:
is equal to zero it is left untouched. */
FGColumnVector3& Normalize(void);
/** Dot product of two vectors
Compute and return the euclidean dot (or scalar) product of two vectors
v1 and v2 */
friend inline double DotProduct(const FGColumnVector3& v1, const FGColumnVector3& v2) {
return v1(1)*v2(1) + v1(2)*v2(2) + v1(3)*v2(3);
}
private:
double data[3];

View file

@ -48,7 +48,7 @@ INCLUDES
DEFINITIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#define ID_LOCATION "$Id: FGLocation.h,v 1.21 2010/07/09 04:11:45 jberndt Exp $"
#define ID_LOCATION "$Id: FGLocation.h,v 1.22 2010/07/25 22:15:57 jberndt Exp $"
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FORWARD DECLARATIONS
@ -142,7 +142,7 @@ CLASS DOCUMENTATION
@see W. C. Durham "Aircraft Dynamics & Control", section 2.2
@author Mathias Froehlich
@version $Id: FGLocation.h,v 1.21 2010/07/09 04:11:45 jberndt Exp $
@version $Id: FGLocation.h,v 1.22 2010/07/25 22:15:57 jberndt Exp $
*/
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -326,7 +326,8 @@ public:
@return the distance of the location represented with this class
instance to the center of the earth in ft. The radius value is
always positive. */
double GetRadius() const { return mECLoc.Magnitude(); }
//double GetRadius() const { return mECLoc.Magnitude(); } // may not work with FlightGear
double GetRadius() const { ComputeDerived(); return mRadius; }
/** Transform matrix from local horizontal to earth centered frame.
Returns a const reference to the rotation matrix of the transform from

View file

@ -68,7 +68,7 @@ DEFINITIONS
GLOBAL DATA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
static const char *IdSrc = "$Id: FGAircraft.cpp,v 1.26 2010/02/15 03:28:24 jberndt Exp $";
static const char *IdSrc = "$Id: FGAircraft.cpp,v 1.27 2010/07/27 23:18:19 jberndt Exp $";
static const char *IdHdr = ID_AIRCRAFT;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -139,10 +139,10 @@ bool FGAircraft::Run(void)
vBodyAccel = vForces/MassBalance->GetMass();
vNcg = vBodyAccel/Inertial->gravity();
vNcg = vBodyAccel/Inertial->SLgravity();
vNwcg = Aerodynamics->GetTb2w() * vNcg;
vNwcg(3) = -1*vNwcg(3) + 1;
vNwcg(3) = 1.0 - vNwcg(3);
RunPostFunctions();

View file

@ -4,7 +4,7 @@
Author: Tony Peden, Jon Berndt
Date started: 01/26/99
Purpose: Calculates additional parameters needed by the visual system, etc.
Called by: FGSimExec
Called by: FGFDMExec
------------- Copyright (C) 1999 Jon S. Berndt (jon@jsbsim.org) -------------
@ -59,7 +59,7 @@ using namespace std;
namespace JSBSim {
static const char *IdSrc = "$Id: FGAuxiliary.cpp,v 1.39 2010/07/09 12:06:11 jberndt Exp $";
static const char *IdSrc = "$Id: FGAuxiliary.cpp,v 1.42 2010/07/27 23:18:19 jberndt Exp $";
static const char *IdHdr = ID_AUXILIARY;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -167,22 +167,10 @@ bool FGAuxiliary::Run()
vEulerRates(ePhi) = vPQR(eP) + vEulerRates(ePsi)*sTht;
}
// 12/16/2005, JSB: For ground handling purposes, at this time, let's ramp
// in the effects of wind from 10 fps to 30 fps when there is weight on the
// landing gear wheels.
if (GroundReactions->GetWOW() && vUVW(eU) < 10) {
vAeroPQR = vPQR;
vAeroUVW = vUVW;
} else if (GroundReactions->GetWOW() && vUVW(eU) < 30) {
double factor = (vUVW(eU) - 10.0)/20.0;
vAeroPQR = vPQR - factor*Atmosphere->GetTurbPQR();
vAeroUVW = vUVW - factor*Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
} else {
FGColumnVector3 wind = Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
vAeroPQR = vPQR - Atmosphere->GetTurbPQR();
vAeroUVW = vUVW - wind;
}
// Combine the wind speed with aircraft speed to obtain wind relative speed
FGColumnVector3 wind = Propagate->GetTl2b()*Atmosphere->GetTotalWindNED();
vAeroPQR = vPQR - Atmosphere->GetTurbPQR();
vAeroUVW = vUVW - wind;
Vt = vAeroUVW.Magnitude();
if ( Vt > 0.05) {
@ -258,7 +246,7 @@ bool FGAuxiliary::Run()
vAircraftAccel /= MassBalance->GetMass();
// Nz is Acceleration in "g's", along normal axis (-Z body axis)
Nz = -vAircraftAccel(eZ)/Inertial->gravity();
Nz = -vAircraftAccel(eZ)/Inertial->SLgravity();
vToEyePt = MassBalance->StructuralToBody(Aircraft->GetXYZep());
vPilotAccel = vAircraftAccel + Propagate->GetPQRdot() * vToEyePt;
vPilotAccel += vPQR * (vPQR * vToEyePt);
@ -269,11 +257,11 @@ bool FGAuxiliary::Run()
// any jitter that could be introduced by the landing gear. Theoretically,
// this branch could be eliminated, with a penalty of having a short
// transient at startup (lasting only a fraction of a second).
vPilotAccel = Propagate->GetTl2b() * FGColumnVector3( 0.0, 0.0, -Inertial->gravity() );
Nz = -vPilotAccel(eZ)/Inertial->gravity();
vPilotAccel = Propagate->GetTl2b() * FGColumnVector3( 0.0, 0.0, -Inertial->SLgravity() );
Nz = -vPilotAccel(eZ)/Inertial->SLgravity();
}
vPilotAccelN = vPilotAccel/Inertial->gravity();
vPilotAccelN = vPilotAccel/Inertial->SLgravity();
// VRP computation
const FGLocation& vLocation = Propagate->GetLocation();

View file

@ -46,14 +46,53 @@ using namespace std;
namespace JSBSim {
static const char *IdSrc = "$Id: FGGroundReactions.cpp,v 1.26 2009/11/12 13:08:11 jberndt Exp $";
static const char *IdSrc = "$Id: FGGroundReactions.cpp,v 1.29 2010/07/30 11:50:01 jberndt Exp $";
static const char *IdHdr = ID_GROUNDREACTIONS;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION for MultiplierIterator (See below for FGGroundReactions)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
MultiplierIterator::MultiplierIterator(FGGroundReactions* GndReactions)
: GroundReactions(GndReactions),
multiplier(NULL),
gearNum(0),
entry(0)
{
for (int i=0; i < GroundReactions->GetNumGearUnits(); i++) {
FGLGear* gear = GroundReactions->GetGearUnit(i);
if (!gear->GetWOW()) continue;
gearNum = i;
multiplier = gear->GetMultiplierEntry(0);
break;
}
}
MultiplierIterator& MultiplierIterator::operator++()
{
for (int i=gearNum; i < GroundReactions->GetNumGearUnits(); i++) {
FGLGear* gear = GroundReactions->GetGearUnit(i);
if (!gear->GetWOW()) continue;
multiplier = gear->GetMultiplierEntry(++entry);
if (multiplier) {
gearNum = i;
break;
}
else
entry = -1;
}
return *this;
}
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
FGGroundReactions::FGGroundReactions(FGFDMExec* fgex) : FGModel(fgex)
{
Name = "FGGroundReactions";
@ -123,6 +162,20 @@ bool FGGroundReactions::GetWOW(void)
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// This function must be called after friction forces are resolved in order to
// include them in the ground reactions total force and moment.
void FGGroundReactions::UpdateForcesAndMoments(void)
{
vForces.InitMatrix();
vMoments.InitMatrix();
for (unsigned int i=0; i<lGear.size(); i++) {
vForces += lGear[i]->UpdateForces();
vMoments += lGear[i]->GetMoments();
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGGroundReactions::Load(Element* el)

View file

@ -45,7 +45,7 @@ INCLUDES
#include "math/FGColumnVector3.h"
#include "input_output/FGXMLElement.h"
#define ID_GROUNDREACTIONS "$Id: FGGroundReactions.h,v 1.15 2009/10/02 10:30:09 jberndt Exp $"
#define ID_GROUNDREACTIONS "$Id: FGGroundReactions.h,v 1.17 2010/07/30 11:50:01 jberndt Exp $"
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FORWARD DECLARATIONS
@ -78,6 +78,19 @@ CLASS DOCUMENTATION
CLASS DECLARATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
class MultiplierIterator
{
public:
MultiplierIterator(FGGroundReactions* GndReactions);
MultiplierIterator& operator++();
FGPropagate::LagrangeMultiplier* operator*() { return multiplier; }
private:
FGGroundReactions* GroundReactions;
FGPropagate::LagrangeMultiplier* multiplier;
int gearNum;
int entry;
};
class FGGroundReactions : public FGModel
{
public:
@ -94,6 +107,7 @@ public:
string GetGroundReactionStrings(string delimeter);
string GetGroundReactionValues(string delimeter);
bool GetWOW(void);
void UpdateForcesAndMoments(void);
int GetNumGearUnits(void) const { return (int)lGear.size(); }

View file

@ -61,7 +61,7 @@ DEFINITIONS
GLOBAL DATA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
static const char *IdSrc = "$Id: FGLGear.cpp,v 1.74 2010/05/18 10:54:14 jberndt Exp $";
static const char *IdSrc = "$Id: FGLGear.cpp,v 1.76 2010/07/30 11:50:01 jberndt Exp $";
static const char *IdHdr = ID_LGEAR;
// Body To Structural (body frame is rotated 180 deg about Y and lengths are given in
@ -210,49 +210,11 @@ FGLGear::FGLGear(Element* el, FGFDMExec* fdmex, int number) :
<< sSteerType << " is undefined." << endl;
}
RFRV = 0.7; // Rolling force relaxation velocity, default value
SFRV = 0.7; // Side force relaxation velocity, default value
Element* relax_vel = el->FindElement("relaxation_velocity");
if (relax_vel) {
if (relax_vel->FindElement("rolling")) {
RFRV = relax_vel->FindElementValueAsNumberConvertTo("rolling", "FT/SEC");
}
if (relax_vel->FindElement("side")) {
SFRV = relax_vel->FindElementValueAsNumberConvertTo("side", "FT/SEC");
}
}
Aircraft = fdmex->GetAircraft();
Propagate = fdmex->GetPropagate();
Auxiliary = fdmex->GetAuxiliary();
FCS = fdmex->GetFCS();
MassBalance = fdmex->GetMassBalance();
LongForceLagFilterCoeff = 1/fdmex->GetDeltaT(); // default longitudinal force filter coefficient
LatForceLagFilterCoeff = 1/fdmex->GetDeltaT(); // default lateral force filter coefficient
Element* force_lag_filter_elem = el->FindElement("force_lag_filter");
if (force_lag_filter_elem) {
if (force_lag_filter_elem->FindElement("rolling")) {
LongForceLagFilterCoeff = force_lag_filter_elem->FindElementValueAsNumber("rolling");
}
if (force_lag_filter_elem->FindElement("side")) {
LatForceLagFilterCoeff = force_lag_filter_elem->FindElementValueAsNumber("side");
}
}
LongForceFilter = Filter(LongForceLagFilterCoeff, fdmex->GetDeltaT());
LatForceFilter = Filter(LatForceLagFilterCoeff, fdmex->GetDeltaT());
WheelSlipLagFilterCoeff = 1/fdmex->GetDeltaT();
Element *wheel_slip_angle_lag_elem = el->FindElement("wheel_slip_filter");
if (wheel_slip_angle_lag_elem) {
WheelSlipLagFilterCoeff = wheel_slip_angle_lag_elem->GetDataAsNumber();
}
WheelSlipFilter = Filter(WheelSlipLagFilterCoeff, fdmex->GetDeltaT());
Auxiliary = fdmex->GetAuxiliary();
Propagate = fdmex->GetPropagate();
FCS = fdmex->GetFCS();
MassBalance = fdmex->GetMassBalance();
GroundReactions = fdmex->GetGroundReactions();
GearUp = false;
GearDown = true;
@ -291,6 +253,11 @@ FGLGear::FGLGear(Element* el, FGFDMExec* fdmex, int number) :
Peak = staticFCoeff;
Curvature = 1.03;
// Initialize Lagrange multipliers
LMultiplier[ftRoll].value = 0.;
LMultiplier[ftSide].value = 0.;
LMultiplier[ftRoll].value = 0.;
Debug(0);
}
@ -307,35 +274,35 @@ FGLGear::~FGLGear()
FGColumnVector3& FGLGear::GetBodyForces(void)
{
double t = fdmex->GetSimTime();
dT = fdmex->GetDeltaT()*fdmex->GetGroundReactions()->GetRate();
dT = fdmex->GetDeltaT()*GroundReactions->GetRate();
vFn.InitMatrix();
if (isRetractable) ComputeRetractionState();
if (GearDown) {
double verticalZProj = 0.;
vWhlBodyVec = MassBalance->StructuralToBody(vXYZn); // Get wheel in body frame
vLocalGear = Propagate->GetTb2l() * vWhlBodyVec; // Get local frame wheel location
gearLoc = Propagate->GetLocation().LocalToLocation(vLocalGear);
// Compute the height of the theoretical location of the wheel (if strut is not compressed) with
// respect to the ground level
// Compute the height of the theoretical location of the wheel (if strut is
// not compressed) with respect to the ground level
double height = fdmex->GetGroundCallback()->GetAGLevel(t, gearLoc, contact, normal, cvel);
vGroundNormal = Propagate->GetTec2b() * normal;
// The height returned above is the AGL and is expressed in the Z direction of the local
// coordinate frame. We now need to transform this height in actual compression of the strut (BOGEY)
// of in the normal direction to the ground (STRUCTURE)
// The height returned above is the AGL and is expressed in the Z direction
// of the ECEF coordinate frame. We now need to transform this height in
// actual compression of the strut (BOGEY) of in the normal direction to the
// ground (STRUCTURE)
double normalZ = (Propagate->GetTec2l()*normal)(eZ);
double LGearProj = -(mTGear.Transposed() * vGroundNormal)(eZ);
switch (eContactType) {
case ctBOGEY:
verticalZProj = (Propagate->GetTb2l()*mTGear*FGColumnVector3(0.,0.,1.))(eZ);
compressLength = verticalZProj > 0.0 ? -height / verticalZProj : 0.0;
compressLength = LGearProj > 0.0 ? height * normalZ / LGearProj : 0.0;
break;
case ctSTRUCTURE:
verticalZProj = -(Propagate->GetTec2l()*normal)(eZ);
compressLength = fabs(verticalZProj) > 0.0 ? -height / verticalZProj : 0.0;
compressLength = height * normalZ / DotProduct(normal, normal);
break;
}
@ -343,13 +310,22 @@ FGColumnVector3& FGLGear::GetBodyForces(void)
WOW = true;
// [The next equation should really use the vector to the contact patch of
// the tire including the strut compression and not the original vWhlBodyVec.]
// The following equations use the vector to the tire contact patch
// including the strut compression.
FGColumnVector3 vWhlDisplVec;
FGColumnVector3 vWhlDisplVec = mTGear * FGColumnVector3(0., 0., compressLength);
FGColumnVector3 vWhlContactVec = vWhlBodyVec - vWhlDisplVec;
vActingXYZn = vXYZn - Tb2s * vWhlDisplVec;
FGColumnVector3 vBodyWhlVel = Propagate->GetPQR() * vWhlContactVec;
switch(eContactType) {
case ctBOGEY:
vWhlDisplVec = mTGear * FGColumnVector3(0., 0., -compressLength);
break;
case ctSTRUCTURE:
vWhlDisplVec = compressLength * vGroundNormal;
break;
}
FGColumnVector3 vWhlContactVec = vWhlBodyVec + vWhlDisplVec;
vActingXYZn = vXYZn + Tb2s * vWhlDisplVec;
FGColumnVector3 vBodyWhlVel = Propagate->GetPQR() * vWhlContactVec;
vBodyWhlVel += Propagate->GetUVW() - Propagate->GetTec2b() * cvel;
vWhlVelVec = mTGear.Transposed() * vBodyWhlVel;
@ -360,47 +336,22 @@ FGColumnVector3& FGLGear::GetBodyForces(void)
vLocalWhlVel = Transform().Transposed() * vBodyWhlVel;
switch (eContactType) {
case ctBOGEY:
// Compression speed along the strut
compressSpeed = -vWhlVelVec(eZ);
case ctSTRUCTURE:
// Compression speed along the ground normal
compressSpeed = -vLocalWhlVel(eX);
}
compressSpeed = -vLocalWhlVel(eX);
if (eContactType == ctBOGEY)
compressSpeed /= LGearProj;
ComputeVerticalStrutForce();
// Compute the forces in the wheel ground plane.
// Compute the friction coefficients in the wheel ground plane.
if (eContactType == ctBOGEY) {
ComputeSlipAngle();
ComputeBrakeForceCoefficient();
ComputeSideForceCoefficient();
double sign = vLocalWhlVel(eY)>0?1.0:(vLocalWhlVel(eY)<0?-1.0:0.0);
vFn(eY) = - ((1.0 - TirePressureNorm) * 30 + vFn(eX) * BrakeFCoeff) * sign;
vFn(eZ) = vFn(eX) * FCoeff;
}
else if (eContactType == ctSTRUCTURE) {
FGColumnVector3 vSlipVec = vLocalWhlVel;
vSlipVec(eX) = 0.;
vSlipVec.Normalize();
vFn -= staticFCoeff * vFn(eX) * vSlipVec;
}
// Lag and attenuate the XY-plane forces dependent on velocity. This code
// uses a lag filter, C/(s + C) where "C" is the filter coefficient. When
// "C" is chosen at the frame rate (in Hz), the jittering is significantly
// reduced. This is because the jitter is present *at* the execution rate.
// If a coefficient is set to something equal to or less than zero, the
// filter is bypassed.
if (LongForceLagFilterCoeff > 0) vFn(eY) = LongForceFilter.execute(vFn(eY));
if (LatForceLagFilterCoeff > 0) vFn(eZ) = LatForceFilter.execute(vFn(eZ));
if ((fabs(vLocalWhlVel(eY)) <= RFRV) && RFRV > 0) vFn(eY) *= fabs(vLocalWhlVel(eY))/RFRV;
if ((fabs(vLocalWhlVel(eZ)) <= SFRV) && SFRV > 0) vFn(eZ) *= fabs(vLocalWhlVel(eZ))/SFRV;
// End section for attenuating gear jitter
// Prepare the Jacobians and the Lagrange multipliers for later friction
// forces calculations.
ComputeJacobian(vWhlContactVec);
} else { // Gear is NOT compressed
@ -491,14 +442,13 @@ void FGLGear::ComputeRetractionState(void)
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Calculate tire slip angle.
void FGLGear::ComputeSlipAngle(void)
{
// Calculate tire slip angle.
WheelSlip = -atan2(vLocalWhlVel(eZ), fabs(vLocalWhlVel(eY)))*radtodeg;
// Filter the wheel slip angle
if (WheelSlipLagFilterCoeff > 0) WheelSlip = WheelSlipFilter.execute(WheelSlip);
// Check that the speed is non-null otherwise use the current angle
if (vLocalWhlVel.Magnitude(eY,eZ) > 1E-3)
WheelSlip = -atan2(vLocalWhlVel(eZ), fabs(vLocalWhlVel(eY)))*radtodeg;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -519,7 +469,7 @@ void FGLGear::ComputeSteeringAngle(void)
SteerAngle = degtorad * FCS->GetSteerPosDeg(GearNumber);
else {
// Check that the speed is non-null otherwise use the current angle
if (vWhlVelVec.Magnitude(eX,eY) > 1E-3)
if (vWhlVelVec.Magnitude(eX,eY) > 0.1)
SteerAngle = atan2(vWhlVelVec(eY), fabs(vWhlVelVec(eX)));
}
break;
@ -576,20 +526,18 @@ void FGLGear::InitializeReporting(void)
void FGLGear::ReportTakeoffOrLanding(void)
{
double deltaT = fdmex->GetDeltaT()*fdmex->GetGroundReactions()->GetRate();
if (FirstContact)
LandingDistanceTraveled += Auxiliary->GetVground()*deltaT;
LandingDistanceTraveled += Auxiliary->GetVground()*dT;
if (StartedGroundRun) {
TakeoffDistanceTraveled50ft += Auxiliary->GetVground()*deltaT;
if (WOW) TakeoffDistanceTraveled += Auxiliary->GetVground()*deltaT;
TakeoffDistanceTraveled50ft += Auxiliary->GetVground()*dT;
if (WOW) TakeoffDistanceTraveled += Auxiliary->GetVground()*dT;
}
if ( ReportEnable
&& Auxiliary->GetVground() <= 0.05
&& !LandingReported
&& fdmex->GetGroundReactions()->GetWOW())
&& GroundReactions->GetWOW())
{
if (debug_lvl > 0) Report(erLand);
}
@ -597,7 +545,7 @@ void FGLGear::ReportTakeoffOrLanding(void)
if ( ReportEnable
&& !TakeoffReported
&& (Propagate->GetDistanceAGL() - vLocalGear(eZ)) > 50.0
&& !fdmex->GetGroundReactions()->GetWOW())
&& !GroundReactions->GetWOW())
{
if (debug_lvl > 0) Report(erTakeoff);
}
@ -738,6 +686,99 @@ double FGLGear::GetGearUnitPos(void)
return GearPos;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Compute the jacobian entries for the friction forces resolution later
// in FGPropagate
void FGLGear::ComputeJacobian(const FGColumnVector3& vWhlContactVec)
{
// When the point of contact is moving, dynamic friction is used
// This type of friction is limited to ctSTRUCTURE elements because their
// friction coefficient is the same in every directions
if ((eContactType == ctSTRUCTURE) && (vLocalWhlVel.Magnitude(eY,eZ) > 1E-3)) {
FGColumnVector3 velocityDirection = vLocalWhlVel;
StaticFriction = false;
velocityDirection(eX) = 0.;
velocityDirection.Normalize();
LMultiplier[ftDynamic].ForceJacobian = Transform()*velocityDirection;
LMultiplier[ftDynamic].MomentJacobian = vWhlContactVec * LMultiplier[ftDynamic].ForceJacobian;
LMultiplier[ftDynamic].Max = 0.;
LMultiplier[ftDynamic].Min = -fabs(dynamicFCoeff * vFn(eX));
LMultiplier[ftDynamic].value = Constrain(LMultiplier[ftDynamic].Min, LMultiplier[ftDynamic].value, LMultiplier[ftDynamic].Max);
}
else {
// Static friction is used for ctSTRUCTURE when the contact point is not moving.
// It is always used for ctBOGEY elements because the friction coefficients
// of a tyre depend on the direction of the movement (roll & side directions).
// This cannot be handled properly by the so-called "dynamic friction".
StaticFriction = true;
LMultiplier[ftRoll].ForceJacobian = Transform()*FGColumnVector3(0.,1.,0.);
LMultiplier[ftSide].ForceJacobian = Transform()*FGColumnVector3(0.,0.,1.);
LMultiplier[ftRoll].MomentJacobian = vWhlContactVec * LMultiplier[ftRoll].ForceJacobian;
LMultiplier[ftSide].MomentJacobian = vWhlContactVec * LMultiplier[ftSide].ForceJacobian;
switch(eContactType) {
case ctBOGEY:
LMultiplier[ftRoll].Max = fabs(BrakeFCoeff * vFn(eX));
LMultiplier[ftSide].Max = fabs(FCoeff * vFn(eX));
break;
case ctSTRUCTURE:
LMultiplier[ftRoll].Max = fabs(staticFCoeff * vFn(eX));
LMultiplier[ftSide].Max = fabs(staticFCoeff * vFn(eX));
break;
}
LMultiplier[ftRoll].Min = -LMultiplier[ftRoll].Max;
LMultiplier[ftSide].Min = -LMultiplier[ftSide].Max;
LMultiplier[ftRoll].value = Constrain(LMultiplier[ftRoll].Min, LMultiplier[ftRoll].value, LMultiplier[ftRoll].Max);
LMultiplier[ftSide].value = Constrain(LMultiplier[ftSide].Min, LMultiplier[ftSide].value, LMultiplier[ftSide].Max);
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// This function is used by the MultiplierIterator class to enumerate the
// Lagrange multipliers of a landing gear. This allows to encapsulate the storage
// of the multipliers in FGLGear without exposing it. From an outside point of
// view, each FGLGear instance has a number of Lagrange multipliers which can be
// accessed through this routine without knowing the exact constraint which they
// model.
FGPropagate::LagrangeMultiplier* FGLGear::GetMultiplierEntry(int entry)
{
switch(entry) {
case 0:
if (StaticFriction)
return &LMultiplier[ftRoll];
else
return &LMultiplier[ftDynamic];
case 1:
if (StaticFriction)
return &LMultiplier[ftSide];
default:
return NULL;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// This routine is called after the Lagrange multiplier has been computed. The
// friction forces of the landing gear are then updated accordingly.
FGColumnVector3& FGLGear::UpdateForces(void)
{
if (StaticFriction) {
vFn(eY) = LMultiplier[ftRoll].value;
vFn(eZ) = LMultiplier[ftSide].value;
}
else
vFn += LMultiplier[ftDynamic].value * (Transform ().Transposed() * LMultiplier[ftDynamic].ForceJacobian);
// Return the updated force in the body frame
return FGForce::GetBodyForces();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGLGear::bind(void)
@ -807,11 +848,11 @@ void FGLGear::Report(ReportType repType)
<< " ft, " << TakeoffDistanceTraveled*0.3048 << " meters" << endl;
cout << " Distance traveled (over 50'): " << TakeoffDistanceTraveled50ft
<< " ft, " << TakeoffDistanceTraveled50ft*0.3048 << " meters" << endl;
cout << " [Altitude (ASL): " << fdmex->GetPropagate()->GetAltitudeASL() << " ft. / "
<< fdmex->GetPropagate()->GetAltitudeASLmeters() << " m | Temperature: "
cout << " [Altitude (ASL): " << Propagate->GetAltitudeASL() << " ft. / "
<< Propagate->GetAltitudeASLmeters() << " m | Temperature: "
<< fdmex->GetAtmosphere()->GetTemperature() - 459.67 << " F / "
<< RankineToCelsius(fdmex->GetAtmosphere()->GetTemperature()) << " C]" << endl;
cout << " [Velocity (KCAS): " << fdmex->GetAuxiliary()->GetVcalibratedKTS() << "]" << endl;
cout << " [Velocity (KCAS): " << Auxiliary->GetVcalibratedKTS() << "]" << endl;
TakeoffReported = true;
break;
case erNone:
@ -866,9 +907,6 @@ void FGLGear::Debug(int from)
cout << " Grouping: " << sBrakeGroup << endl;
cout << " Max Steer Angle: " << maxSteerAngle << endl;
cout << " Retractable: " << isRetractable << endl;
cout << " Relaxation Velocities:" << endl;
cout << " Rolling: " << RFRV << endl;
cout << " Side: " << SFRV << endl;
}
}
}

View file

@ -39,6 +39,7 @@ INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#include "models/propulsion/FGForce.h"
#include "models/FGPropagate.h"
#include "math/FGColumnVector3.h"
#include <string>
@ -46,7 +47,7 @@ INCLUDES
DEFINITIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#define ID_LGEAR "$Id: FGLGear.h,v 1.38 2010/03/23 22:44:36 andgi Exp $"
#define ID_LGEAR "$Id: FGLGear.h,v 1.40 2010/07/30 11:50:01 jberndt Exp $"
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FORWARD DECLARATIONS
@ -177,19 +178,10 @@ CLASS DOCUMENTATION
<retractable>{0 | 1}</retractable>
<table type="{CORNERING_COEFF}">
</table>
<relaxation_velocity>
<rolling unit="{FT/SEC | KTS | M/S}"> {number} </rolling>
<side unit="{FT/SEC | KTS | M/S}"> {number} </side>
</relaxation_velocity>
<force_lag_filter>
<rolling> {number} </rolling>
<side> {number} </side>
</force_lag_filter>
<wheel_slip_filter> {number} </wheel_slip_filter>
</contact>
@endcode
@author Jon S. Berndt
@version $Id: FGLGear.h,v 1.38 2010/03/23 22:44:36 andgi Exp $
@version $Id: FGLGear.h,v 1.40 2010/07/30 11:50:01 jberndt Exp $
@see Richard E. McFarland, "A Standard Kinematic Model for Flight Simulation at
NASA-Ames", NASA CR-2497, January 1975
@see Barnes W. McCormick, "Aerodynamics, Aeronautics, and Flight Mechanics",
@ -215,6 +207,8 @@ public:
enum ReportType {erNone=0, erTakeoff, erLand};
/// Damping types
enum DampType {dtLinear=0, dtSquare};
/// Friction types
enum FrictionType {ftRoll=0, ftSide, ftDynamic};
/** Constructor
@param el a pointer to the XML element that contains the CONTACT info.
@param Executive a pointer to the parent executive object
@ -289,6 +283,9 @@ public:
bool IsBogey(void) const { return (eContactType == ctBOGEY);}
double GetGearUnitPos(void);
double GetSteerAngleDeg(void) const { return radtodeg*SteerAngle; }
FGPropagate::LagrangeMultiplier* GetMultiplierEntry(int entry);
void SetLagrangeMultiplier(double lambda, int entry);
FGColumnVector3& UpdateForces(void);
void bind(void);
@ -338,6 +335,7 @@ private:
bool GearUp, GearDown;
bool Servicable;
bool Castered;
bool StaticFriction;
std::string name;
std::string sSteerType;
std::string sBrakeGroup;
@ -350,22 +348,14 @@ private:
DampType eDampType;
DampType eDampTypeRebound;
double maxSteerAngle;
double RFRV; // Rolling force relaxation velocity
double SFRV; // Side force relaxation velocity
double LongForceLagFilterCoeff; // Longitudinal Force Lag Filter Coefficient
double LatForceLagFilterCoeff; // Lateral Force Lag Filter Coefficient
double WheelSlipLagFilterCoeff; // Wheel slip angle lag filter coefficient
Filter LongForceFilter;
Filter LatForceFilter;
Filter WheelSlipFilter;
FGPropagate::LagrangeMultiplier LMultiplier[3];
FGState* State;
FGAircraft* Aircraft;
FGPropagate* Propagate;
FGAuxiliary* Auxiliary;
FGFCS* FCS;
FGMassBalance* MassBalance;
FGAuxiliary* Auxiliary;
FGPropagate* Propagate;
FGFCS* FCS;
FGMassBalance* MassBalance;
FGGroundReactions* GroundReactions;
void ComputeRetractionState(void);
void ComputeBrakeForceCoefficient(void);
@ -374,6 +364,7 @@ private:
void ComputeSideForceCoefficient(void);
void ComputeVerticalStrutForce(void);
void ComputeGroundCoordSys(void);
void ComputeJacobian(const FGColumnVector3& vWhlContactVec);
void CrashDetect(void);
void InitializeReporting(void);
void ResetReporting(void);

View file

@ -48,6 +48,7 @@ COMMENTS, REFERENCES, and NOTES
Wiley & Sons, 1979 ISBN 0-471-03032-5
[5] Bernard Etkin, "Dynamics of Flight, Stability and Control", Wiley & Sons,
1982 ISBN 0-471-08936-2
[6] Erin Catto, "Iterative Dynamics with Temporal Coherence", February 22, 2005
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
@ -70,7 +71,7 @@ using namespace std;
namespace JSBSim {
static const char *IdSrc = "$Id: FGPropagate.cpp,v 1.55 2010/07/09 04:11:45 jberndt Exp $";
static const char *IdSrc = "$Id: FGPropagate.cpp,v 1.59 2010/07/30 11:50:01 jberndt Exp $";
static const char *IdHdr = ID_PROPAGATE;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -216,6 +217,7 @@ void FGPropagate::SetInitialState(const FGInitialCondition *FGIC)
// Make an initial run and set past values
CalculatePQRdot(); // Angular rate derivative
CalculateUVWdot(); // Translational rate derivative
ResolveFrictionForces(0.); // Update rate derivatives with friction forces
CalculateQuatdot(); // Angular orientation derivative
CalculateInertialVelocity(); // Translational position derivative
@ -269,6 +271,7 @@ static int ctr;
// Calculate state derivatives
CalculatePQRdot(); // Angular rate derivative
CalculateUVWdot(); // Translational rate derivative
ResolveFrictionForces(dt); // Update rate derivatives with friction forces
CalculateQuatdot(); // Angular orientation derivative
CalculateInertialVelocity(); // Translational position derivative
@ -304,8 +307,7 @@ static int ctr;
VState.vLocation = Ti2ec*VState.vInertialPosition;
RecomputeLocalTerrainRadius();
// Calculate current aircraft radius from center of planet
VehicleRadius = VState.vInertialPosition.Magnitude();
VehicleRadius = GetRadius(); // Calculate current aircraft radius from center of planet
radInv = 1.0/VehicleRadius;
VState.vPQR = VState.vPQRi - Ti2b * vOmegaEarth;
@ -386,9 +388,7 @@ void FGPropagate::CalculateUVWdot(void)
vUVWdot = vForces/mass - (VState.vPQR + 2.0*(Ti2b *vOmegaEarth)) * VState.vUVW;
// Include Centripetal acceleration.
if (!GroundReactions->GetWOW() && Aircraft->GetHoldDown() == 0) {
vUVWdot -= Ti2b * (vOmegaEarth*(vOmegaEarth*VState.vInertialPosition));
}
vUVWdot -= Ti2b * (vOmegaEarth*(vOmegaEarth*VState.vInertialPosition));
// Include Gravitation accel
switch (gravType) {
@ -464,11 +464,133 @@ void FGPropagate::Integrate( FGQuaternion& Integrand,
break;
case eAdamsBashforth4: Integrand += (1/24.0)*dt*(55.0*ValDot[0] - 59.0*ValDot[1] + 37.0*ValDot[2] - 9.0*ValDot[3]);
break;
case eNone: // do nothing, freeze translational rate
case eNone: // do nothing, freeze rotational rate
break;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Resolves the contact forces just before integrating the EOM.
// This routine is using Lagrange multipliers and the projected Gauss-Seidel
// (PGS) method.
// Reference: See Erin Catto, "Iterative Dynamics with Temporal Coherence",
// February 22, 2005
// In JSBSim there is only one rigid body (the aircraft) and there can be
// multiple points of contact between the aircraft and the ground. As a
// consequence our matrix J*M^-1*J^T is not sparse and the algorithm described
// in Catto's paper has been adapted accordingly.
void FGPropagate::ResolveFrictionForces(double dt)
{
const double invMass = 1.0 / MassBalance->GetMass();
const FGMatrix33& Jinv = MassBalance->GetJinv();
vector <FGColumnVector3> JacF, JacM;
FGColumnVector3 vdot, wdot;
FGColumnVector3 Fc, Mc;
int n = 0, i;
// Compiles data from the ground reactions to build up the jacobian matrix
for (MultiplierIterator it=MultiplierIterator(GroundReactions); *it; ++it, n++) {
JacF.push_back((*it)->ForceJacobian);
JacM.push_back((*it)->MomentJacobian);
}
// If no gears are in contact with the ground then return
if (!n) return;
double *a = new double[n*n]; // Will contain J*M^-1*J^T
double *eta = new double[n];
double *lambda = new double[n];
double *lambdaMin = new double[n];
double *lambdaMax = new double[n];
// Initializes the Lagrange multipliers
i = 0;
for (MultiplierIterator it=MultiplierIterator(GroundReactions); *it; ++it, i++) {
lambda[i] = (*it)->value;
lambdaMax[i] = (*it)->Max;
lambdaMin[i] = (*it)->Min;
}
vdot = vUVWdot;
wdot = vPQRdot;
if (dt > 0.) {
// First compute the ground velocity below the aircraft center of gravity
FGLocation contact;
FGColumnVector3 normal, cvel;
double t = FDMExec->GetSimTime();
double height = FDMExec->GetGroundCallback()->GetAGLevel(t, VState.vLocation, contact, normal, cvel);
// Instruct the algorithm to zero out the relative movement between the
// aircraft and the ground.
vdot += (VState.vUVW - Tec2b * cvel) / dt;
wdot += VState.vPQR / dt;
}
// Assemble the linear system of equations
for (i=0; i < n; i++) {
for (int j=0; j < i; j++)
a[i*n+j] = a[j*n+i]; // Takes advantage of the symmetry of J^T*M^-1*J
for (int j=i; j < n; j++)
a[i*n+j] = DotProduct(JacF[i],invMass*JacF[j])+DotProduct(JacM[i],Jinv*JacM[j]);
}
// Prepare the linear system for the Gauss-Seidel algorithm :
// divide every line of 'a' and eta by a[i,i]. This is in order to save
// a division computation at each iteration of Gauss-Seidel.
for (i=0; i < n; i++) {
double d = 1.0 / a[i*n+i];
eta[i] = -(DotProduct(JacF[i],vdot)+DotProduct(JacM[i],wdot))*d;
for (int j=0; j < n; j++)
a[i*n+j] *= d;
}
// Resolve the Lagrange multipliers with the projected Gauss-Seidel method
for (int iter=0; iter < 50; iter++) {
double norm = 0.;
for (i=0; i < n; i++) {
double lambda0 = lambda[i];
double dlambda = eta[i];
for (int j=0; j < n; j++)
dlambda -= a[i*n+j]*lambda[j];
lambda[i] = Constrain(lambdaMin[i], lambda0+dlambda, lambdaMax[i]);
dlambda = lambda[i] - lambda0;
norm += fabs(dlambda);
}
if (norm < 1E-5) break;
}
// Calculate the total friction forces and moments
Fc.InitMatrix();
Mc.InitMatrix();
for (i=0; i< n; i++) {
Fc += lambda[i]*JacF[i];
Mc += lambda[i]*JacM[i];
}
vUVWdot += invMass * Fc;
vPQRdot += Jinv * Mc;
// Save the value of the Lagrange multipliers to accelerate the convergence
// of the Gauss-Seidel algorithm at next iteration.
i = 0;
for (MultiplierIterator it=MultiplierIterator(GroundReactions); *it; ++it)
(*it)->value = lambda[i++];
GroundReactions->UpdateForcesAndMoments();
delete a, eta, lambda, lambdaMin, lambdaMax;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGPropagate::SetInertialOrientation(FGQuaternion Qi) {
@ -488,9 +610,8 @@ void FGPropagate::RecomputeLocalTerrainRadius(void)
double t = FDMExec->GetSimTime();
// Get the LocalTerrain radius.
// FDMExec->GetGroundCallback()->GetAGLevel(t, VState.vLocation, contactloc, dv, dv);
// LocalTerrainRadius = contactloc.GetRadius();
LocalTerrainRadius = FDMExec->GetGroundCallback()->GetTerrainGeoCentRadius();
FDMExec->GetGroundCallback()->GetAGLevel(t, VState.vLocation, contactloc, dv, dv);
LocalTerrainRadius = contactloc.GetRadius();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

View file

@ -49,7 +49,7 @@ INCLUDES
DEFINITIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#define ID_PROPAGATE "$Id: FGPropagate.h,v 1.41 2010/07/09 04:11:45 jberndt Exp $"
#define ID_PROPAGATE "$Id: FGPropagate.h,v 1.43 2010/07/25 15:35:11 jberndt Exp $"
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FORWARD DECLARATIONS
@ -102,7 +102,7 @@ CLASS DOCUMENTATION
@endcode
@author Jon S. Berndt, Mathias Froehlich
@version $Id: FGPropagate.h,v 1.41 2010/07/09 04:11:45 jberndt Exp $
@version $Id: FGPropagate.h,v 1.43 2010/07/25 15:35:11 jberndt Exp $
*/
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
@ -181,10 +181,6 @@ public:
@return false if no error */
bool Run(void);
void CalculatePQRdot(void);
void CalculateQuatdot(void);
void CalculateInertialVelocity(void);
void CalculateUVWdot(void);
const FGQuaternion& GetQuaterniondot(void) const {return vQtrndot;}
/** Retrieves the velocity vector.
@ -568,6 +564,14 @@ public:
VState.vLocation -= vDeltaXYZEC;
}
struct LagrangeMultiplier {
FGColumnVector3 ForceJacobian;
FGColumnVector3 MomentJacobian;
double Min;
double Max;
double value;
};
private:
// state vector
@ -606,6 +610,11 @@ private:
eIntegrateType integrator_translational_position;
int gravType;
void CalculatePQRdot(void);
void CalculateQuatdot(void);
void CalculateInertialVelocity(void);
void CalculateUVWdot(void);
void Integrate( FGColumnVector3& Integrand,
FGColumnVector3& Val,
deque <FGColumnVector3>& ValDot,
@ -618,6 +627,8 @@ private:
double dt,
eIntegrateType integration_type);
void ResolveFrictionForces(double dt);
void bind(void);
void Debug(int from);
};