1
0
Fork 0
flightgear/src/Network/atc610x.cxx

1300 lines
39 KiB
C++
Raw Normal View History

// atc610x.cxx -- FGFS interface to ATC 610x hardware
//
// Written by Curtis Olson, started January 2002
//
// Copyright (C) 2002 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/compiler.h>
#include <stdlib.h> // atoi() atof() abs()
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
2002-02-08 00:07:53 +00:00
#include <stdio.h> //snprintf
#if defined( _MSC_VER ) || defined(__MINGW32__)
2002-02-08 00:07:53 +00:00
# include <io.h> //lseek, read, write
#endif
#include STL_STRING
2002-02-08 00:07:53 +00:00
#include <plib/ul.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/io/iochannel.hxx>
#include <simgear/math/sg_types.hxx>
#include <simgear/misc/props.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include "atc610x.hxx"
SG_USING_STD(string);
// Lock the ATC 610 hardware
static int ATC610xLock( int fd ) {
// rewind
lseek( fd, 0, SEEK_SET );
char tmp[2];
int result = read( fd, tmp, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_DEBUG, "Lock failed" );
}
return result;
}
// Write a radios command
static int ATC610xRelease( int fd ) {
// rewind
lseek( fd, 0, SEEK_SET );
char tmp[2];
tmp[0] = tmp[1] = 0;
int result = write( fd, tmp, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_DEBUG, "Release failed" );
}
return result;
}
// Read analog inputs
static void ATC610xReadAnalogInputs( int fd, unsigned char *analog_in_bytes ) {
// rewind
lseek( fd, 0, SEEK_SET );
int result = read( fd, analog_in_bytes, ATC_ANAL_IN_BYTES );
if ( result != ATC_ANAL_IN_BYTES ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
}
// Write a radios command
static int ATC610xSetRadios( int fd,
unsigned char data[ATC_RADIO_DISPLAY_BYTES] )
{
// rewind
lseek( fd, 0, SEEK_SET );
int result = write( fd, data, ATC_RADIO_DISPLAY_BYTES );
if ( result != ATC_RADIO_DISPLAY_BYTES ) {
SG_LOG( SG_IO, SG_DEBUG, "Write failed" );
}
return result;
}
// Read status of last radios written to
static void ATC610xReadRadios( int fd, unsigned char *switch_data ) {
// rewind
lseek( fd, 0, SEEK_SET );
int result = read( fd, switch_data, ATC_RADIO_SWITCH_BYTES );
if ( result != ATC_RADIO_SWITCH_BYTES ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
}
// Write a stepper command
static int ATC610xSetStepper( int fd, unsigned char channel,
unsigned char value )
{
// rewind
lseek( fd, 0, SEEK_SET );
// Write the value
unsigned char buf[3];
buf[0] = channel;
buf[1] = value;
buf[2] = 0;
int result = write( fd, buf, 2 );
if ( result != 2 ) {
SG_LOG( SG_IO, SG_INFO, "Write failed" );
}
SG_LOG( SG_IO, SG_DEBUG,
"Sent cmd = " << (int)channel << " value = " << (int)value );
return result;
}
// Read status of last stepper written to
static unsigned char ATC610xReadStepper( int fd ) {
int result;
// rewind
lseek( fd, 0, SEEK_SET );
// Write the value
unsigned char buf[2];
result = read( fd, buf, 1 );
if ( result != 1 ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
SG_LOG( SG_IO, SG_DEBUG, "Read result = " << (int)buf[0] );
return buf[0];
}
// Read switch inputs
static void ATC610xReadSwitches( int fd, unsigned char *switch_bytes ) {
// rewind
lseek( fd, 0, SEEK_SET );
int result = read( fd, switch_bytes, ATC_SWITCH_BYTES );
if ( result != ATC_SWITCH_BYTES ) {
SG_LOG( SG_IO, SG_ALERT, "Read failed" );
exit( -1 );
}
}
// Turn a lamp on or off
void ATC610xSetLamp( int fd, int channel, bool value ) {
// lamp channels 0-63 are written to LampPort0, channels 64-127
// are written to LampPort1
// bits 0-6 are the lamp address
// bit 7 is the value (on/off)
int result;
// Write the value
unsigned char buf[3];
buf[0] = channel;
buf[1] = value;
buf[2] = 0;
result = write( fd, buf, 2 );
if ( result != 2 ) {
2002-06-05 17:44:09 +00:00
SG_LOG( SG_IO, SG_ALERT, "Write failed" );
exit( -1 );
}
}
// Open and initialize ATC 610x hardware
bool FGATC610x::open() {
if ( is_enabled() ) {
SG_LOG( SG_IO, SG_ALERT, "This shouldn't happen, but the channel "
<< "is already in use, ignoring" );
return false;
}
SG_LOG( SG_IO, SG_ALERT,
"Initializing ATC 610x hardware, please wait ..." );
set_hz( 30 ); // default to processing requests @ 30Hz
set_enabled( true );
board = 0; // 610x uses a single board number = 0
snprintf( lock_file, 256, "/proc/atc610x/board%d/lock", board );
snprintf( analog_in_file, 256, "/proc/atc610x/board%d/analog_in", board );
snprintf( lamps_file, 256, "/proc/atc610x/board%d/lamps", board );
snprintf( radios_file, 256, "/proc/atc610x/board%d/radios", board );
snprintf( stepper_file, 256, "/proc/atc610x/board%d/steppers", board );
snprintf( switches_file, 256, "/proc/atc610x/board%d/switches", board );
/////////////////////////////////////////////////////////////////////
// Open the /proc files
/////////////////////////////////////////////////////////////////////
lock_fd = ::open( lock_file, O_RDWR );
if ( lock_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", lock_file );
perror( msg );
exit( -1 );
}
analog_in_fd = ::open( analog_in_file, O_RDONLY );
if ( analog_in_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", analog_in_file );
perror( msg );
exit( -1 );
}
lamps_fd = ::open( lamps_file, O_WRONLY );
if ( lamps_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", lamps_file );
perror( msg );
exit( -1 );
}
radios_fd = ::open( radios_file, O_RDWR );
if ( radios_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", radios_file );
perror( msg );
exit( -1 );
}
stepper_fd = ::open( stepper_file, O_RDWR );
if ( stepper_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", stepper_file );
perror( msg );
exit( -1 );
}
switches_fd = ::open( switches_file, O_RDONLY );
if ( switches_fd == -1 ) {
SG_LOG( SG_IO, SG_ALERT, "errno = " << errno );
char msg[256];
snprintf( msg, 256, "Error opening %s", switches_file );
perror( msg );
exit( -1 );
}
/////////////////////////////////////////////////////////////////////
// Home the compass stepper motor
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
" - Homing the compass stepper motor" );
// Lock the hardware, keep trying until we succeed
while ( ATC610xLock( lock_fd ) <= 0 );
// Send the stepper home command
ATC610xSetStepper( stepper_fd, ATC_COMPASS_CH, ATC_STEPPER_HOME );
// Release the hardware
ATC610xRelease( lock_fd );
SG_LOG( SG_IO, SG_ALERT,
" - Waiting for compass to come home." );
bool home = false;
int timeout = 900; // about 30 seconds
while ( ! home && timeout > 0 ) {
if ( timeout % 150 == 0 ) {
SG_LOG( SG_IO, SG_INFO, "waiting for compass = " << timeout );
} else {
SG_LOG( SG_IO, SG_DEBUG, "Checking if compass home ..." );
}
while ( ATC610xLock( lock_fd ) <= 0 );
unsigned char result = ATC610xReadStepper( stepper_fd );
if ( result == 0 ) {
home = true;
}
ATC610xRelease( lock_fd );
2002-02-11 15:24:08 +00:00
#if defined( _MSC_VER )
2002-02-08 00:07:53 +00:00
ulMilliSecondSleep(33);
2002-02-11 15:25:19 +00:00
#elif defined (WIN32) && !defined(__CYGWIN__)
Sleep (33);
2002-02-08 00:07:53 +00:00
#else
usleep(33);
2002-02-08 00:07:53 +00:00
#endif
--timeout;
}
compass_position = 0.0;
/////////////////////////////////////////////////////////////////////
// Blank the radio display
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
" - Clearing the radios displays." );
// Prepair the data
unsigned char value = 0xff;
for ( int channel = 0; channel < ATC_RADIO_DISPLAY_BYTES; ++channel ) {
radio_display_data[channel] = value;
}
// Lock the hardware, keep trying until we succeed
while ( ATC610xLock( lock_fd ) <= 0 );
// Set radio display
ATC610xSetRadios( radios_fd, radio_display_data );
ATC610xRelease( lock_fd );
/////////////////////////////////////////////////////////////////////
// Blank the lamps
/////////////////////////////////////////////////////////////////////
for ( int i = 0; i < 128; ++i ) {
ATC610xSetLamp( lamps_fd, i, false );
}
/////////////////////////////////////////////////////////////////////
// Finished initing hardware
/////////////////////////////////////////////////////////////////////
SG_LOG( SG_IO, SG_ALERT,
"Done initializing ATC 610x hardware." );
/////////////////////////////////////////////////////////////////////
// Connect up to property values
/////////////////////////////////////////////////////////////////////
mag_compass = fgGetNode( "/steam/mag-compass-deg", true );
dme_min = fgGetNode( "/radios/dme/ete-min", true );
dme_kt = fgGetNode( "/radios/dme/speed-kt", true );
dme_nm = fgGetNode( "/radios/dme/distance-nm", true );
com1_freq = fgGetNode( "/radios/comm[0]/frequencies/selected-mhz", true );
com1_stby_freq
= fgGetNode( "/radios/comm[0]/frequencies/standby-mhz", true );
com2_freq = fgGetNode( "/radios/comm[1]/frequencies/selected-mhz", true );
com2_stby_freq
= fgGetNode( "/radios/comm[1]/frequencies/standby-mhz", true );
nav1_freq = fgGetNode( "/radios/nav[0]/frequencies/selected-mhz", true );
nav1_stby_freq
= fgGetNode( "/radios/nav[0]/frequencies/standby-mhz", true );
nav2_freq = fgGetNode( "/radios/nav[1]/frequencies/selected-mhz", true );
nav2_stby_freq
= fgGetNode( "/radios/nav[1]/frequencies/standby-mhz", true );
adf_on_off_vol = fgGetNode( "/radios/adf/on-off-volume", true );
2002-07-03 04:48:44 +00:00
adf_adf_btn = fgGetNode( "/radios/adf/adf-btn", true );
adf_bfo_btn = fgGetNode( "/radios/adf/bfo-btn", true );
adf_freq = fgGetNode( "/radios/adf/frequencies/selected-khz", true );
adf_stby_freq = fgGetNode( "/radios/adf/frequencies/standby-khz", true );
adf_stby_mode = fgGetNode( "/radios/adf/stby-mode", true );
adf_timer_mode = fgGetNode( "/radios/adf/timer-mode", true );
adf_count_mode = fgGetNode( "/radios/adf/count-mode", true );
adf_flight_timer = fgGetNode( "/radios/adf/flight-timer", true );
adf_elapsed_timer = fgGetNode( "/radios/adf/elapsed-timer", true );
inner = fgGetNode( "/radios/marker-beacon/inner", true );
middle = fgGetNode( "/radios/marker-beacon/middle", true );
outer = fgGetNode( "/radios/marker-beacon/outer", true );
return true;
}
/////////////////////////////////////////////////////////////////////
// Read analog inputs
/////////////////////////////////////////////////////////////////////
#define ATC_AILERON_CENTER 535
#define ATC_ELEVATOR_TRIM_CENTER 512
#define ATC_ELEVATOR_CENTER 543
bool FGATC610x::do_analog_in() {
// Read raw data in byte form
ATC610xReadAnalogInputs( analog_in_fd, analog_in_bytes );
// Convert to integer values
for ( int channel = 0; channel < ATC_ANAL_IN_VALUES; ++channel ) {
unsigned char hi = analog_in_bytes[2 * channel] & 0x03;
unsigned char lo = analog_in_bytes[2 * channel + 1];
analog_in_data[channel] = hi * 256 + lo;
// printf("%02x %02x ", hi, lo );
// printf("%04d ", value );
}
float tmp, tmp1, tmp2;
// aileron
tmp = (float)(analog_in_data[0] - ATC_AILERON_CENTER) / 256.0f;
fgSetFloat( "/controls/aileron", tmp );
// cout << "aileron = " << analog_in_data[0] << " = " << tmp;
// elevator
tmp = (float)(analog_in_data[4] - ATC_ELEVATOR_TRIM_CENTER) / 512.0f;
fgSetFloat( "/controls/elevator-trim", tmp );
// cout << "trim = " << analog_in_data[4] << " = " << tmp;
// trim
tmp = (float)(ATC_ELEVATOR_CENTER - analog_in_data[5]) / 100.0f;
fgSetFloat( "/controls/elevator", tmp );
// cout << " elev = " << analog_in_data[5] << " = " << tmp << endl;
// mixture
tmp = (float)analog_in_data[7] / 680.0f;
fgSetFloat( "/controls/mixture[0]", tmp );
// throttle
tmp = (float)analog_in_data[8] / 690.0f;
fgSetFloat( "/controls/throttle[0]", tmp );
// nav1 volume
tmp = (float)analog_in_data[25] / 1024.0f;
fgSetFloat( "/radios/nav[0]/volume", tmp );
// nav2 volume
tmp = (float)analog_in_data[24] / 1024.0f;
fgSetFloat( "/radios/nav[1]/volume", tmp );
// adf volume
tmp = (float)analog_in_data[26] / 1024.0f;
fgSetFloat( "/radios/adf/on-off-volume", tmp );
// nav2 obs tuner
tmp = (float)analog_in_data[29] * 360.0f / 1024.0f;
fgSetFloat( "/radios/nav[1]/radials/selected-deg", tmp );
// nav1 obs tuner
tmp1 = (float)analog_in_data[30] * 360.0f / 1024.0f;
tmp2 = (float)analog_in_data[31] * 360.0f / 1024.0f;
fgSetFloat( "/radios/nav[0]/radials/selected-deg", tmp1 );
return true;
}
/////////////////////////////////////////////////////////////////////
// Write the lights
/////////////////////////////////////////////////////////////////////
2002-07-03 04:48:44 +00:00
bool FGATC610x::do_lights( double dt ) {
2002-07-03 04:48:44 +00:00
// Marker beacons
ATC610xSetLamp( lamps_fd, 4, inner->getBoolValue() );
ATC610xSetLamp( lamps_fd, 5, middle->getBoolValue() );
ATC610xSetLamp( lamps_fd, 3, outer->getBoolValue() );
2002-07-03 04:48:44 +00:00
// ADF annunciators
if ( adf_on_off_vol->getDoubleValue() >= 0.01 ) {
ATC610xSetLamp( lamps_fd, 11, !adf_adf_btn->getBoolValue() ); // ANT
ATC610xSetLamp( lamps_fd, 12, adf_adf_btn->getBoolValue() ); // ADF
ATC610xSetLamp( lamps_fd, 13, adf_bfo_btn->getBoolValue() ); // BFO
ATC610xSetLamp( lamps_fd, 14, !adf_stby_mode->getBoolValue() ); // FRQ
ATC610xSetLamp( lamps_fd, 15, adf_stby_mode->getBoolValue() &&
!adf_timer_mode->getBoolValue() ); // FLT
// ET needs to blink when we are in ET set countdown time
if ( adf_count_mode->getIntValue() < 2 ) {
ATC610xSetLamp( lamps_fd, 16, adf_stby_mode->getBoolValue() &&
adf_timer_mode->getBoolValue() ); // ET
} else {
et_flash_time += dt;
if ( et_flash && et_flash_time > 0.5 ) {
et_flash = false;
et_flash_time -= 0.5;
} else if ( !et_flash && et_flash_time > 0.2 ) {
et_flash = true;
et_flash_time -= 0.2;
}
ATC610xSetLamp( lamps_fd, 16, et_flash ); // ET
}
} else {
ATC610xSetLamp( lamps_fd, 11, false ); // ANT
ATC610xSetLamp( lamps_fd, 12, false ); // ADF
ATC610xSetLamp( lamps_fd, 13, false ); // BFO
ATC610xSetLamp( lamps_fd, 14, false ); // FRQ
ATC610xSetLamp( lamps_fd, 15, false ); // FLT
ATC610xSetLamp( lamps_fd, 16, false ); // ET
}
return true;
}
/////////////////////////////////////////////////////////////////////
// Read radio switches
/////////////////////////////////////////////////////////////////////
bool FGATC610x::do_radio_switches() {
double freq, coarse_freq, fine_freq, value;
int diff;
ATC610xReadRadios( radios_fd, radio_switch_data );
// DME Switch
dme_switch = (radio_switch_data[7] >> 4) & 0x03;
if ( dme_switch == 0 ) {
// off
fgSetInt( "/radios/dme/switch-position", 0 );
} else if ( dme_switch == 2 ) {
// nav1
fgSetInt( "/radios/dme/switch-position", 1 );
} else if ( dme_switch == 1 ) {
// nav2
fgSetInt( "/radios/dme/switch-position", 3 );
}
// Com1 Swap
int com1_swap = !((radio_switch_data[7] >> 1) & 0x01);
static int last_com1_swap;
if ( com1_swap && (last_com1_swap != com1_swap) ) {
float tmp = com1_freq->getFloatValue();
fgSetFloat( "/radios/comm[0]/frequencies/selected-mhz",
com1_stby_freq->getFloatValue() );
fgSetFloat( "/radios/comm[0]/frequencies/standby-mhz", tmp );
}
last_com1_swap = com1_swap;
// Com2 Swap
int com2_swap = !((radio_switch_data[15] >> 1) & 0x01);
static int last_com2_swap;
if ( com2_swap && (last_com2_swap != com2_swap) ) {
float tmp = com2_freq->getFloatValue();
fgSetFloat( "/radios/comm[1]/frequencies/selected-mhz",
com2_stby_freq->getFloatValue() );
fgSetFloat( "/radios/comm[1]/frequencies/standby-mhz", tmp );
}
last_com2_swap = com2_swap;
// Nav1 Swap
int nav1_swap = radio_switch_data[11] & 0x01;
static int last_nav1_swap;
if ( nav1_swap && (last_nav1_swap != nav1_swap) ) {
float tmp = nav1_freq->getFloatValue();
fgSetFloat( "/radios/nav[0]/freqencies/selected-mhz",
nav1_stby_freq->getFloatValue() );
fgSetFloat( "/radios/nav[0]/frequencies/standby-mhz", tmp );
}
last_nav1_swap = nav1_swap;
// Nav2 Swap
int nav2_swap = !(radio_switch_data[19] & 0x01);
static int last_nav2_swap;
if ( nav2_swap && (last_nav2_swap != nav2_swap) ) {
float tmp = nav2_freq->getFloatValue();
fgSetFloat( "/radios/nav[1]/frequencies/selected-mhz",
nav2_stby_freq->getFloatValue() );
fgSetFloat( "/radios/nav[1]/frequencies/standby-mhz", tmp );
}
last_nav2_swap = nav2_swap;
// Com1 Tuner
int com1_tuner_fine = ((radio_switch_data[5] >> 4) & 0x0f) - 1;
int com1_tuner_coarse = (radio_switch_data[5] & 0x0f) - 1;
static int last_com1_tuner_fine = com1_tuner_fine;
static int last_com1_tuner_coarse = com1_tuner_coarse;
freq = com1_stby_freq->getFloatValue();
coarse_freq = (int)freq;
fine_freq = (int)((freq - coarse_freq) * 40 + 0.5);
if ( com1_tuner_fine != last_com1_tuner_fine ) {
diff = com1_tuner_fine - last_com1_tuner_fine;
if ( abs(diff) > 4 ) {
// roll over
if ( com1_tuner_fine < last_com1_tuner_fine ) {
// going up
diff = 12 - last_com1_tuner_fine + com1_tuner_fine;
} else {
// going down
diff = com1_tuner_fine - 12 - last_com1_tuner_fine;
}
}
fine_freq += diff;
}
while ( fine_freq >= 40.0 ) { fine_freq -= 40.0; }
while ( fine_freq < 0.0 ) { fine_freq += 40.0; }
if ( com1_tuner_coarse != last_com1_tuner_coarse ) {
diff = com1_tuner_coarse - last_com1_tuner_coarse;
if ( abs(diff) > 4 ) {
// roll over
if ( com1_tuner_coarse < last_com1_tuner_coarse ) {
// going up
diff = 12 - last_com1_tuner_coarse + com1_tuner_coarse;
} else {
// going down
diff = com1_tuner_coarse - 12 - last_com1_tuner_coarse;
}
}
coarse_freq += diff;
}
if ( coarse_freq < 118.0 ) { coarse_freq += 19.0; }
if ( coarse_freq > 136.0 ) { coarse_freq -= 19.0; }
last_com1_tuner_fine = com1_tuner_fine;
last_com1_tuner_coarse = com1_tuner_coarse;
fgSetFloat( "/radios/comm[0]/frequencies/standby-mhz",
coarse_freq + fine_freq / 40.0 );
// Com2 Tuner
int com2_tuner_fine = ((radio_switch_data[13] >> 4) & 0x0f) - 1;
int com2_tuner_coarse = (radio_switch_data[13] & 0x0f) - 1;
static int last_com2_tuner_fine = com2_tuner_fine;
static int last_com2_tuner_coarse = com2_tuner_coarse;
freq = com2_stby_freq->getFloatValue();
coarse_freq = (int)freq;
fine_freq = (int)((freq - coarse_freq) * 40 + 0.5);
if ( com2_tuner_fine != last_com2_tuner_fine ) {
diff = com2_tuner_fine - last_com2_tuner_fine;
if ( abs(diff) > 4 ) {
// roll over
if ( com2_tuner_fine < last_com2_tuner_fine ) {
// going up
diff = 12 - last_com2_tuner_fine + com2_tuner_fine;
} else {
// going down
diff = com2_tuner_fine - 12 - last_com2_tuner_fine;
}
}
fine_freq += diff;
}
while ( fine_freq >= 40.0 ) { fine_freq -= 40.0; }
while ( fine_freq < 0.0 ) { fine_freq += 40.0; }
if ( com2_tuner_coarse != last_com2_tuner_coarse ) {
diff = com2_tuner_coarse - last_com2_tuner_coarse;
if ( abs(diff) > 4 ) {
// roll over
if ( com2_tuner_coarse < last_com2_tuner_coarse ) {
// going up
diff = 12 - last_com2_tuner_coarse + com2_tuner_coarse;
} else {
// going down
diff = com2_tuner_coarse - 12 - last_com2_tuner_coarse;
}
}
coarse_freq += diff;
}
if ( coarse_freq < 118.0 ) { coarse_freq += 19.0; }
if ( coarse_freq > 136.0 ) { coarse_freq -= 19.0; }
last_com2_tuner_fine = com2_tuner_fine;
last_com2_tuner_coarse = com2_tuner_coarse;
fgSetFloat( "/radios/comm[1]/frequencies/standby-mhz",
coarse_freq + fine_freq / 40.0 );
// Nav1 Tuner
int nav1_tuner_fine = ((radio_switch_data[9] >> 4) & 0x0f) - 1;
int nav1_tuner_coarse = (radio_switch_data[9] & 0x0f) - 1;
static int last_nav1_tuner_fine = nav1_tuner_fine;
static int last_nav1_tuner_coarse = nav1_tuner_coarse;
freq = nav1_stby_freq->getFloatValue();
coarse_freq = (int)freq;
fine_freq = (int)((freq - coarse_freq) * 20 + 0.5);
if ( nav1_tuner_fine != last_nav1_tuner_fine ) {
diff = nav1_tuner_fine - last_nav1_tuner_fine;
if ( abs(diff) > 4 ) {
// roll over
if ( nav1_tuner_fine < last_nav1_tuner_fine ) {
// going up
diff = 12 - last_nav1_tuner_fine + nav1_tuner_fine;
} else {
// going down
diff = nav1_tuner_fine - 12 - last_nav1_tuner_fine;
}
}
fine_freq += diff;
}
while ( fine_freq >= 20.0 ) { fine_freq -= 20.0; }
while ( fine_freq < 0.0 ) { fine_freq += 20.0; }
if ( nav1_tuner_coarse != last_nav1_tuner_coarse ) {
diff = nav1_tuner_coarse - last_nav1_tuner_coarse;
if ( abs(diff) > 4 ) {
// roll over
if ( nav1_tuner_coarse < last_nav1_tuner_coarse ) {
// going up
diff = 12 - last_nav1_tuner_coarse + nav1_tuner_coarse;
} else {
// going down
diff = nav1_tuner_coarse - 12 - last_nav1_tuner_coarse;
}
}
coarse_freq += diff;
}
if ( coarse_freq < 108.0 ) { coarse_freq += 10.0; }
if ( coarse_freq > 117.0 ) { coarse_freq -= 10.0; }
last_nav1_tuner_fine = nav1_tuner_fine;
last_nav1_tuner_coarse = nav1_tuner_coarse;
fgSetFloat( "/radios/nav[0]/frequencies/standby-mhz",
coarse_freq + fine_freq / 20.0 );
// Nav2 Tuner
int nav2_tuner_fine = ((radio_switch_data[17] >> 4) & 0x0f) - 1;
int nav2_tuner_coarse = (radio_switch_data[17] & 0x0f) - 1;
static int last_nav2_tuner_fine = nav2_tuner_fine;
static int last_nav2_tuner_coarse = nav2_tuner_coarse;
freq = nav2_stby_freq->getFloatValue();
coarse_freq = (int)freq;
fine_freq = (int)((freq - coarse_freq) * 20 + 0.5);
if ( nav2_tuner_fine != last_nav2_tuner_fine ) {
diff = nav2_tuner_fine - last_nav2_tuner_fine;
if ( abs(diff) > 4 ) {
// roll over
if ( nav2_tuner_fine < last_nav2_tuner_fine ) {
// going up
diff = 12 - last_nav2_tuner_fine + nav2_tuner_fine;
} else {
// going down
diff = nav2_tuner_fine - 12 - last_nav2_tuner_fine;
}
}
fine_freq += diff;
}
while ( fine_freq >= 20.0 ) { fine_freq -= 20.0; }
while ( fine_freq < 0.0 ) { fine_freq += 20.0; }
if ( nav2_tuner_coarse != last_nav2_tuner_coarse ) {
diff = nav2_tuner_coarse - last_nav2_tuner_coarse;
if ( abs(diff) > 4 ) {
// roll over
if ( nav2_tuner_coarse < last_nav2_tuner_coarse ) {
// going up
diff = 12 - last_nav2_tuner_coarse + nav2_tuner_coarse;
} else {
// going down
diff = nav2_tuner_coarse - 12 - last_nav2_tuner_coarse;
}
}
coarse_freq += diff;
}
if ( coarse_freq < 108.0 ) { coarse_freq += 10.0; }
if ( coarse_freq > 117.0 ) { coarse_freq -= 10.0; }
last_nav2_tuner_fine = nav2_tuner_fine;
last_nav2_tuner_coarse = nav2_tuner_coarse;
fgSetFloat( "/radios/nav[1]/frequencies/standby-mhz",
coarse_freq + fine_freq / 20.0);
// ADF Tuner
int adf_tuner_fine = ((radio_switch_data[21] >> 4) & 0x0f) - 1;
int adf_tuner_coarse = (radio_switch_data[21] & 0x0f) - 1;
static int last_adf_tuner_fine = adf_tuner_fine;
static int last_adf_tuner_coarse = adf_tuner_coarse;
if ( adf_count_mode->getIntValue() == 2 ) {
// tune count down timer
value = adf_elapsed_timer->getDoubleValue();
} else {
// tune frequency
if ( adf_stby_mode->getIntValue() == 1 ) {
value = adf_freq->getFloatValue();
} else {
value = adf_stby_freq->getFloatValue();
}
}
if ( adf_tuner_fine != last_adf_tuner_fine ) {
diff = adf_tuner_fine - last_adf_tuner_fine;
if ( abs(diff) > 4 ) {
// roll over
if ( adf_tuner_fine < last_adf_tuner_fine ) {
// going up
diff = 12 - last_adf_tuner_fine + adf_tuner_fine;
} else {
// going down
diff = adf_tuner_fine - 12 - last_adf_tuner_fine;
}
}
value += diff;
}
if ( adf_tuner_coarse != last_adf_tuner_coarse ) {
diff = adf_tuner_coarse - last_adf_tuner_coarse;
if ( abs(diff) > 4 ) {
// roll over
if ( adf_tuner_coarse < last_adf_tuner_coarse ) {
// going up
diff = 12 - last_adf_tuner_coarse + adf_tuner_coarse;
} else {
// going down
diff = adf_tuner_coarse - 12 - last_adf_tuner_coarse;
}
}
if ( adf_count_mode->getIntValue() == 2 ) {
value += 60 * diff;
} else {
value += 25 * diff;
}
}
if ( adf_count_mode->getIntValue() == 2 ) {
if ( value < 0 ) { value += 3600; }
if ( value > 3599 ) { value -= 3600; }
} else {
if ( value < 200 ) { value += 1600; }
if ( value > 1799 ) { value -= 1600; }
}
last_adf_tuner_fine = adf_tuner_fine;
last_adf_tuner_coarse = adf_tuner_coarse;
if ( adf_count_mode->getIntValue() == 2 ) {
fgSetFloat( "/radios/adf/elapsed-timer", value );
} else {
if ( adf_stby_mode->getIntValue() == 1 ) {
fgSetFloat( "/radios/adf/frequencies/selected-khz", value );
} else {
fgSetFloat( "/radios/adf/frequencies/standby-khz", value );
}
}
// ADF Modes
fgSetInt( "/radios/adf/adf-btn", !(radio_switch_data[23] & 0x01) );
fgSetInt( "/radios/adf/bfo-btn", !(radio_switch_data[23] >> 1 & 0x01) );
fgSetInt( "/radios/adf/frq-btn", !(radio_switch_data[23] >> 2 & 0x01) );
fgSetInt( "/radios/adf/flt-et-btn", !(radio_switch_data[23] >> 3 & 0x01) );
fgSetInt( "/radios/adf/set-rst-btn", !(radio_switch_data[23] >> 4 & 0x01) );
/* cout << "adf = " << !(radio_switch_data[23] & 0x01)
<< " bfo = " << !(radio_switch_data[23] >> 1 & 0x01)
<< " stby = " << !(radio_switch_data[23] >> 2 & 0x01)
<< " timer = " << !(radio_switch_data[23] >> 3 & 0x01)
<< " set/rst = " << !(radio_switch_data[23] >> 4 & 0x01)
<< endl; */
return true;
}
/////////////////////////////////////////////////////////////////////
// Update the radio display
/////////////////////////////////////////////////////////////////////
bool FGATC610x::do_radio_display() {
char digits[10];
2002-02-05 15:57:46 +00:00
int i;
if ( dme_switch != 0 ) {
// DME minutes
float minutes = dme_min->getFloatValue();
if ( minutes > 999 ) {
minutes = 999.0;
}
sprintf(digits, "%03.0f", minutes);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[0] = digits[1] << 4 | digits[2];
radio_display_data[1] = 0xf0 | digits[0];
// DME knots
float knots = dme_kt->getFloatValue();
if ( knots > 999 ) {
knots = 999.0;
}
sprintf(digits, "%03.0f", knots);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[2] = digits[1] << 4 | digits[2];
radio_display_data[3] = 0xf0 | digits[0];
// DME distance (nm)
float nm = dme_nm->getFloatValue();
if ( nm > 99 ) {
nm = 99.0;
}
sprintf(digits, "%04.1f", nm);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[4] = digits[1] << 4 | digits[3];
radio_display_data[5] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each
// display turns on the decimal point
} else {
// blank dem display
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
radio_display_data[i] = 0xff;
}
}
// Com1 standby frequency
float com1_stby = com1_stby_freq->getFloatValue();
if ( fabs(com1_stby) > 999.99 ) {
com1_stby = 0.0;
}
sprintf(digits, "%06.3f", com1_stby);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[6] = digits[4] << 4 | digits[5];
radio_display_data[7] = digits[1] << 4 | digits[2];
radio_display_data[8] = 0xf0 | digits[0];
// Com1 in use frequency
float com1 = com1_freq->getFloatValue();
if ( fabs(com1) > 999.99 ) {
com1 = 0.0;
}
sprintf(digits, "%06.3f", com1);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[9] = digits[4] << 4 | digits[5];
radio_display_data[10] = digits[1] << 4 | digits[2];
radio_display_data[11] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// Com2 standby frequency
float com2_stby = com2_stby_freq->getFloatValue();
if ( fabs(com2_stby) > 999.99 ) {
com2_stby = 0.0;
}
sprintf(digits, "%06.3f", com2_stby);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[18] = digits[4] << 4 | digits[5];
radio_display_data[19] = digits[1] << 4 | digits[2];
radio_display_data[20] = 0xf0 | digits[0];
// Com2 in use frequency
float com2 = com2_freq->getFloatValue();
if ( fabs(com2) > 999.99 ) {
com2 = 0.0;
}
sprintf(digits, "%06.3f", com2);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[21] = digits[4] << 4 | digits[5];
radio_display_data[22] = digits[1] << 4 | digits[2];
radio_display_data[23] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// Nav1 standby frequency
float nav1_stby = nav1_stby_freq->getFloatValue();
if ( fabs(nav1_stby) > 999.99 ) {
nav1_stby = 0.0;
}
sprintf(digits, "%06.2f", nav1_stby);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[12] = digits[4] << 4 | digits[5];
radio_display_data[13] = digits[1] << 4 | digits[2];
radio_display_data[14] = 0xf0 | digits[0];
// Nav1 in use frequency
float nav1 = nav1_freq->getFloatValue();
if ( fabs(nav1) > 999.99 ) {
nav1 = 0.0;
}
sprintf(digits, "%06.2f", nav1);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[15] = digits[4] << 4 | digits[5];
radio_display_data[16] = digits[1] << 4 | digits[2];
radio_display_data[17] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// Nav2 standby frequency
float nav2_stby = nav2_stby_freq->getFloatValue();
if ( fabs(nav2_stby) > 999.99 ) {
nav2_stby = 0.0;
}
sprintf(digits, "%06.2f", nav2_stby);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[24] = digits[4] << 4 | digits[5];
radio_display_data[25] = digits[1] << 4 | digits[2];
radio_display_data[26] = 0xf0 | digits[0];
// Nav2 in use frequency
float nav2 = nav2_freq->getFloatValue();
if ( fabs(nav2) > 999.99 ) {
nav2 = 0.0;
}
sprintf(digits, "%06.2f", nav2);
2002-02-05 15:57:46 +00:00
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[27] = digits[4] << 4 | digits[5];
radio_display_data[28] = digits[1] << 4 | digits[2];
radio_display_data[29] = 0x00 | digits[0];
// the 0x00 in the upper nibble of the 6th byte of each display
// turns on the decimal point
// ADF standby frequency / timer
if ( adf_on_off_vol->getDoubleValue() >= 0.01 ) {
if ( adf_stby_mode->getIntValue() == 0 ) {
// frequency
float adf_stby = adf_stby_freq->getFloatValue();
if ( fabs(adf_stby) > 1799 ) {
adf_stby = 1799;
}
sprintf(digits, "%04.0f", adf_stby);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[30] = digits[3] << 4 | 0x0f;
radio_display_data[31] = digits[1] << 4 | digits[2];
if ( digits[0] == 0 ) {
radio_display_data[32] = 0xff;
} else {
radio_display_data[32] = 0xf0 | digits[0];
}
} else {
// timer
double time;
int hours, min, sec;
if ( adf_timer_mode->getIntValue() == 0 ) {
time = adf_flight_timer->getDoubleValue();
} else {
time = adf_elapsed_timer->getDoubleValue();
}
// cout << time << endl;
hours = (int)(time / 3600.0);
time -= hours * 3600.00;
min = (int)(time / 60.0);
time -= min * 60.0;
sec = (int)time;
int big, small;
if ( hours > 0 ) {
big = hours;
if ( big > 99 ) {
big = 99;
}
small = min;
} else {
big = min;
small = sec;
}
if ( big > 99 ) {
big = 99;
}
// cout << big << ":" << small << endl;
sprintf(digits, "%02d%02d", big, small);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[30] = digits[3] << 4 | 0x0f;
radio_display_data[31] = digits[1] << 4 | digits[2];
radio_display_data[32] = 0xf0 | digits[0];
}
// ADF in use frequency
float adf = adf_freq->getFloatValue();
if ( fabs(adf) > 1799 ) {
adf = 1799;
}
sprintf(digits, "%04.0f", adf);
for ( i = 0; i < 6; ++i ) {
digits[i] -= '0';
}
radio_display_data[33] = digits[2] << 4 | digits[3];
if ( digits[0] == 0 ) {
radio_display_data[34] = 0xf0 | digits[1];
} else {
radio_display_data[34] = digits[0] << 4 | digits[1];
}
} else {
radio_display_data[30] = 0xff;
radio_display_data[31] = 0xff;
radio_display_data[32] = 0xff;
radio_display_data[33] = 0xff;
radio_display_data[34] = 0xff;
}
ATC610xSetRadios( radios_fd, radio_display_data );
return true;
}
/////////////////////////////////////////////////////////////////////
// Drive the stepper motors
/////////////////////////////////////////////////////////////////////
bool FGATC610x::do_steppers() {
float diff = mag_compass->getFloatValue() - compass_position;
while ( diff < -180.0 ) { diff += 360.0; }
while ( diff > 180.0 ) { diff -= 360.0; }
int steps = (int)(diff * 4);
// cout << "steps = " << steps << endl;
if ( steps > 4 ) { steps = 4; }
if ( steps < -4 ) { steps = -4; }
if ( abs(steps) > 0 ) {
unsigned char cmd = 0x80; // stepper command
if ( steps > 0 ) {
cmd |= 0x20; // go up
} else {
cmd |= 0x00; // go down
}
cmd |= abs(steps);
// sync compass_position with hardware position
compass_position += (float)steps / 4.0;
ATC610xSetStepper( stepper_fd, ATC_COMPASS_CH, cmd );
}
return true;
}
/////////////////////////////////////////////////////////////////////
// Read the switch positions
/////////////////////////////////////////////////////////////////////
// decode the packed switch data
static void update_switch_matrix(
int board,
unsigned char switch_data[ATC_SWITCH_BYTES],
int switch_matrix[2][ATC_NUM_COLS][ATC_SWITCH_BYTES] )
{
for ( int row = 0; row < ATC_SWITCH_BYTES; ++row ) {
unsigned char switches = switch_data[row];
for( int column = 0; column < ATC_NUM_COLS; ++column ) {
switch_matrix[board][column][row] = switches & 1;
switches = switches >> 1;
}
}
}
bool FGATC610x::do_switches() {
ATC610xReadSwitches( switches_fd, switch_data );
// unpack the switch data
int switch_matrix[2][ATC_NUM_COLS][ATC_SWITCH_BYTES];
update_switch_matrix( board, switch_data, switch_matrix );
// magnetos and starter switch
int magnetos = 0;
bool starter = false;
if ( switch_matrix[board][3][1] == 1 ) {
magnetos = 3;
starter = true;
} else if ( switch_matrix[board][2][1] == 1 ) {
magnetos = 3;
starter = false;
} else if ( switch_matrix[board][1][1] == 1 ) {
magnetos = 2;
starter = false;
} else if ( switch_matrix[board][0][1] == 1 ) {
magnetos = 1;
starter = false;
} else {
magnetos = 0;
starter = false;
}
// flaps
float flaps = 0.0;
if ( switch_matrix[board][6][3] == 1 ) {
flaps = 1.0;
} else if ( switch_matrix[board][5][3] == 1 ) {
flaps = 2.0 / 3.0;
} else if ( switch_matrix[board][4][3] == 1 ) {
flaps = 1.0 / 3.0;
} else if ( switch_matrix[board][4][3] == 0 ) {
flaps = 0.0;
}
// do a bit of filtering on the magneto/starter switch and the
// flap lever because these are not well debounced in hardware
static int mag1, mag2, mag3;
mag3 = mag2;
mag2 = mag1;
mag1 = magnetos;
if ( mag1 == mag2 && mag2 == mag3 ) {
fgSetInt( "/controls/magnetos[0]", magnetos );
}
static bool start1, start2, start3;
start3 = start2;
start2 = start1;
start1 = starter;
if ( start1 == start2 && start2 == start3 ) {
fgSetBool( "/controls/starter[0]", starter );
}
static float flap1, flap2, flap3;
flap3 = flap2;
flap2 = flap1;
flap1 = flaps;
if ( flap1 == flap2 && flap2 == flap3 ) {
fgSetFloat( "/controls/flaps", flaps );
}
return true;
}
bool FGATC610x::process() {
2002-07-03 04:48:44 +00:00
SGTimeStamp current;
current.stamp();
double dt = (double)(current - last_time_stamp) / 1000000;
last_time_stamp.stamp();
// Lock the hardware, skip if it's not ready yet
if ( ATC610xLock( lock_fd ) > 0 ) {
do_analog_in();
2002-07-03 04:48:44 +00:00
do_lights( dt );
do_radio_switches();
do_radio_display();
do_steppers();
do_switches();
ATC610xRelease( lock_fd );
return true;
} else {
return false;
}
}
bool FGATC610x::close() {
return true;
}