205 lines
4.8 KiB
C++
205 lines
4.8 KiB
C++
|
#include "Math.hpp"
|
||
|
#include "RigidBody.hpp"
|
||
|
namespace yasim {
|
||
|
|
||
|
RigidBody::RigidBody()
|
||
|
{
|
||
|
// Allocate space for 16 masses initially. More space will be
|
||
|
// allocated dynamically.
|
||
|
_nMasses = 0;
|
||
|
_massesAlloced = 16;
|
||
|
_masses = new Mass[_massesAlloced];
|
||
|
_gyro[0] = _gyro[1] = _gyro[2] = 0;
|
||
|
_spin[0] = _spin[1] = _spin[2] = 0;
|
||
|
}
|
||
|
|
||
|
RigidBody::~RigidBody()
|
||
|
{
|
||
|
delete[] _masses;
|
||
|
}
|
||
|
|
||
|
int RigidBody::addMass(float mass, float* pos)
|
||
|
{
|
||
|
// If out of space, reallocate twice as much
|
||
|
if(_nMasses == _massesAlloced) {
|
||
|
_massesAlloced *= 2;
|
||
|
Mass *m2 = new Mass[_massesAlloced];
|
||
|
for(int i=0; i<_nMasses; i++)
|
||
|
m2[i] = _masses[i];
|
||
|
delete[] _masses;
|
||
|
_masses = m2;
|
||
|
}
|
||
|
|
||
|
_masses[_nMasses].m = mass;
|
||
|
Math::set3(pos, _masses[_nMasses].p);
|
||
|
return _nMasses++;
|
||
|
}
|
||
|
|
||
|
void RigidBody::setMass(int handle, float mass)
|
||
|
{
|
||
|
_masses[handle].m = mass;
|
||
|
}
|
||
|
|
||
|
void RigidBody::setMass(int handle, float mass, float* pos)
|
||
|
{
|
||
|
_masses[handle].m = mass;
|
||
|
Math::set3(pos, _masses[handle].p);
|
||
|
}
|
||
|
|
||
|
int RigidBody::numMasses()
|
||
|
{
|
||
|
return _nMasses;
|
||
|
}
|
||
|
|
||
|
float RigidBody::getMass(int handle)
|
||
|
{
|
||
|
return _masses[handle].m;
|
||
|
}
|
||
|
|
||
|
void RigidBody::getMassPosition(int handle, float* out)
|
||
|
{
|
||
|
out[0] = _masses[handle].p[0];
|
||
|
out[1] = _masses[handle].p[1];
|
||
|
out[2] = _masses[handle].p[2];
|
||
|
}
|
||
|
|
||
|
float RigidBody::getTotalMass()
|
||
|
{
|
||
|
return _totalMass;
|
||
|
}
|
||
|
|
||
|
// Calcualtes the rotational velocity of a particular point. All
|
||
|
// coordinates are local!
|
||
|
void RigidBody::pointVelocity(float* pos, float* rot, float* out)
|
||
|
{
|
||
|
Math::sub3(pos, _cg, out); // out = pos-cg
|
||
|
Math::cross3(rot, out, out); // = rot cross (pos-cg)
|
||
|
}
|
||
|
|
||
|
void RigidBody::setGyro(float* angularMomentum)
|
||
|
{
|
||
|
Math::set3(angularMomentum, _gyro);
|
||
|
}
|
||
|
|
||
|
void RigidBody::recalc()
|
||
|
{
|
||
|
// Calculate the c.g and total mass:
|
||
|
_totalMass = 0;
|
||
|
_cg[0] = _cg[1] = _cg[2] = 0;
|
||
|
for(int i=0; i<_nMasses; i++) {
|
||
|
float m = _masses[i].m;
|
||
|
_totalMass += m;
|
||
|
_cg[0] += m * _masses[i].p[0];
|
||
|
_cg[1] += m * _masses[i].p[1];
|
||
|
_cg[2] += m * _masses[i].p[2];
|
||
|
}
|
||
|
Math::mul3(1/_totalMass, _cg, _cg);
|
||
|
|
||
|
// Now the inertia tensor:
|
||
|
for(int i=0; i<9; i++)
|
||
|
_I[i] = 0;
|
||
|
|
||
|
for(int i=0; i<_nMasses; i++) {
|
||
|
float m = _masses[i].m;
|
||
|
|
||
|
float x = _masses[i].p[0] - _cg[0];
|
||
|
float y = _masses[i].p[1] - _cg[1];
|
||
|
float z = _masses[i].p[2] - _cg[2];
|
||
|
|
||
|
float xy = m*x*y; float yz = m*y*z; float zx = m*z*x;
|
||
|
float x2 = m*x*x; float y2 = m*y*y; float z2 = m*z*z;
|
||
|
|
||
|
_I[0] += y2+z2; _I[1] -= xy; _I[2] -= zx;
|
||
|
_I[3] -= xy; _I[4] += x2+z2; _I[5] -= yz;
|
||
|
_I[6] -= zx; _I[7] -= yz; _I[8] += x2+y2;
|
||
|
}
|
||
|
|
||
|
// And its inverse
|
||
|
Math::invert33(_I, _invI);
|
||
|
}
|
||
|
|
||
|
void RigidBody::reset()
|
||
|
{
|
||
|
_torque[0] = _torque[1] = _torque[2] = 0;
|
||
|
_force[0] = _force[1] = _force[2] = 0;
|
||
|
}
|
||
|
|
||
|
void RigidBody::addForce(float* force)
|
||
|
{
|
||
|
Math::add3(_force, force, _force);
|
||
|
}
|
||
|
|
||
|
void RigidBody::addTorque(float* torque)
|
||
|
{
|
||
|
Math::add3(_torque, torque, _torque);
|
||
|
}
|
||
|
|
||
|
void RigidBody::addForce(float* pos, float* force)
|
||
|
{
|
||
|
addForce(force);
|
||
|
|
||
|
// For a force F at position X, the torque about the c.g C is:
|
||
|
// torque = F cross (C - X)
|
||
|
float v[3], t[3];
|
||
|
Math::sub3(_cg, pos, v);
|
||
|
Math::cross3(force, v, t);
|
||
|
addTorque(t);
|
||
|
}
|
||
|
|
||
|
void RigidBody::setBodySpin(float* rotation)
|
||
|
{
|
||
|
Math::set3(rotation, _spin);
|
||
|
}
|
||
|
|
||
|
void RigidBody::getCG(float* cgOut)
|
||
|
{
|
||
|
Math::set3(_cg, cgOut);
|
||
|
}
|
||
|
|
||
|
void RigidBody::getAccel(float* accelOut)
|
||
|
{
|
||
|
Math::mul3(1/_totalMass, _force, accelOut);
|
||
|
}
|
||
|
|
||
|
void RigidBody::getAccel(float* pos, float* accelOut)
|
||
|
{
|
||
|
getAccel(accelOut);
|
||
|
|
||
|
// Turn the "spin" vector into a normalized spin axis "a" and a
|
||
|
// radians/sec scalar "rate".
|
||
|
float a[3];
|
||
|
float rate = Math::mag3(_spin);
|
||
|
Math::set3(_spin, a);
|
||
|
Math::mul3(1/rate, a, a);
|
||
|
|
||
|
float v[3];
|
||
|
Math::sub3(_cg, pos, v); // v = cg - pos
|
||
|
Math::mul3(Math::dot3(v, a), a, a); // a = a * (v dot a)
|
||
|
Math::add3(v, a, v); // v = v + a
|
||
|
|
||
|
// Now v contains the vector from pos to the rotation axis.
|
||
|
// Multiply by the square of the rotation rate to get the linear
|
||
|
// acceleration.
|
||
|
Math::mul3(rate*rate, v, v);
|
||
|
Math::add3(v, accelOut, accelOut);
|
||
|
}
|
||
|
|
||
|
void RigidBody::getAngularAccel(float* accelOut)
|
||
|
{
|
||
|
// Compute "tau" as the externally applied torque, plus the
|
||
|
// counter-torque due to the internal gyro.
|
||
|
float tau[3]; // torque
|
||
|
Math::cross3(_gyro, _spin, tau);
|
||
|
Math::add3(_torque, tau, tau);
|
||
|
|
||
|
// Now work the equation of motion. Use "v" as a notational
|
||
|
// shorthand, as the value isn't an acceleration until the end.
|
||
|
float *v = accelOut;
|
||
|
Math::vmul33(_I, _spin, v); // v = I*omega
|
||
|
Math::cross3(_spin, v, v); // v = omega X I*omega
|
||
|
Math::add3(tau, v, v); // v = tau + (omega X I*omega)
|
||
|
Math::vmul33(_invI, v, v); // v = invI*(tau + (omega X I*omega))
|
||
|
}
|
||
|
|
||
|
}; // namespace yasim
|