1997-08-01 15:27:56 +00:00
|
|
|
/*
|
|
|
|
* sunpos.c
|
|
|
|
* kirk johnson
|
|
|
|
* july 1993
|
|
|
|
*
|
|
|
|
* code for calculating the position on the earth's surface for which
|
|
|
|
* the sun is directly overhead (adapted from _practical astronomy
|
|
|
|
* with your calculator, third edition_, peter duffett-smith,
|
|
|
|
* cambridge university press, 1988.)
|
|
|
|
*
|
|
|
|
* RCS $Id$
|
|
|
|
*
|
|
|
|
* Copyright (C) 1989, 1990, 1993, 1994, 1995 Kirk Lauritz Johnson
|
|
|
|
*
|
|
|
|
* Parts of the source code (as marked) are:
|
|
|
|
* Copyright (C) 1989, 1990, 1991 by Jim Frost
|
|
|
|
* Copyright (C) 1992 by Jamie Zawinski <jwz@lucid.com>
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify and freely distribute xearth for
|
|
|
|
* non-commercial and not-for-profit purposes is hereby granted
|
|
|
|
* without fee, provided that both the above copyright notice and this
|
|
|
|
* permission notice appear in all copies and in supporting
|
|
|
|
* documentation.
|
|
|
|
*
|
|
|
|
* The author makes no representations about the suitability of this
|
|
|
|
* software for any purpose. It is provided "as is" without express or
|
|
|
|
* implied warranty.
|
|
|
|
*
|
|
|
|
* THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
|
|
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
|
|
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
|
|
|
|
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
|
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
|
|
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
|
|
*
|
|
|
|
* $Id$
|
|
|
|
* (Log is kept at end of this file)
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
1997-08-06 00:24:22 +00:00
|
|
|
#include <time.h>
|
1997-08-01 15:27:56 +00:00
|
|
|
|
|
|
|
#include "sunpos.h"
|
1997-08-13 20:23:49 +00:00
|
|
|
#include "fg_time.h"
|
1997-08-01 15:27:56 +00:00
|
|
|
#include "../constants.h"
|
1997-08-13 20:23:49 +00:00
|
|
|
#include "../Math/fg_geodesy.h"
|
|
|
|
#include "../Math/polar.h"
|
|
|
|
|
1997-08-01 15:27:56 +00:00
|
|
|
#undef E
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* the epoch upon which these astronomical calculations are based is
|
|
|
|
* 1990 january 0.0, 631065600 seconds since the beginning of the
|
|
|
|
* "unix epoch" (00:00:00 GMT, Jan. 1, 1970)
|
|
|
|
*
|
|
|
|
* given a number of seconds since the start of the unix epoch,
|
|
|
|
* DaysSinceEpoch() computes the number of days since the start of the
|
|
|
|
* astronomical epoch (1990 january 0.0)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define EpochStart (631065600)
|
|
|
|
#define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600)))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* assuming the apparent orbit of the sun about the earth is circular,
|
|
|
|
* the rate at which the orbit progresses is given by RadsPerDay --
|
|
|
|
* FG_2PI radians per orbit divided by 365.242191 days per year:
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define RadsPerDay (FG_2PI/365.242191)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* details of sun's apparent orbit at epoch 1990.0 (after
|
|
|
|
* duffett-smith, table 6, section 46)
|
|
|
|
*
|
|
|
|
* Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees
|
|
|
|
* OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees
|
|
|
|
* Eccentricity (eccentricity of orbit) 0.016713
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define Epsilon_g (279.403303*(FG_2PI/360))
|
|
|
|
#define OmegaBar_g (282.768422*(FG_2PI/360))
|
|
|
|
#define Eccentricity (0.016713)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MeanObliquity gives the mean obliquity of the earth's axis at epoch
|
|
|
|
* 1990.0 (computed as 23.440592 degrees according to the method given
|
|
|
|
* in duffett-smith, section 27)
|
|
|
|
*/
|
|
|
|
#define MeanObliquity (23.440592*(FG_2PI/360))
|
|
|
|
|
|
|
|
static double solve_keplers_equation(double);
|
|
|
|
static double sun_ecliptic_longitude(time_t);
|
|
|
|
static void ecliptic_to_equatorial(double, double, double *, double *);
|
|
|
|
static double julian_date(int, int, int);
|
|
|
|
static double GST(time_t);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* solve Kepler's equation via Newton's method
|
|
|
|
* (after duffett-smith, section 47)
|
|
|
|
*/
|
|
|
|
static double solve_keplers_equation(double M) {
|
|
|
|
double E;
|
|
|
|
double delta;
|
|
|
|
|
|
|
|
E = M;
|
|
|
|
while (1) {
|
|
|
|
delta = E - Eccentricity*sin(E) - M;
|
|
|
|
if (fabs(delta) <= 1e-10) break;
|
|
|
|
E -= delta / (1 - Eccentricity*cos(E));
|
|
|
|
}
|
|
|
|
|
|
|
|
return E;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* compute ecliptic longitude of sun (in radians) (after
|
|
|
|
* duffett-smith, section 47) */
|
|
|
|
|
|
|
|
static double sun_ecliptic_longitude(time_t ssue) {
|
|
|
|
/* time_t ssue; seconds since unix epoch */
|
|
|
|
double D, N;
|
|
|
|
double M_sun, E;
|
|
|
|
double v;
|
|
|
|
|
|
|
|
D = DaysSinceEpoch(ssue);
|
|
|
|
|
|
|
|
N = RadsPerDay * D;
|
|
|
|
N = fmod(N, FG_2PI);
|
|
|
|
if (N < 0) N += FG_2PI;
|
|
|
|
|
|
|
|
M_sun = N + Epsilon_g - OmegaBar_g;
|
|
|
|
if (M_sun < 0) M_sun += FG_2PI;
|
|
|
|
|
|
|
|
E = solve_keplers_equation(M_sun);
|
|
|
|
v = 2 * atan(sqrt((1+Eccentricity)/(1-Eccentricity)) * tan(E/2));
|
|
|
|
|
|
|
|
return (v + OmegaBar_g);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* convert from ecliptic to equatorial coordinates (after
|
|
|
|
* duffett-smith, section 27) */
|
|
|
|
|
|
|
|
static void ecliptic_to_equatorial(double lambda, double beta,
|
|
|
|
double *alpha, double *delta) {
|
|
|
|
/* double lambda; ecliptic longitude */
|
|
|
|
/* double beta; ecliptic latitude */
|
|
|
|
/* double *alpha; (return) right ascension */
|
|
|
|
/* double *delta; (return) declination */
|
|
|
|
|
|
|
|
double sin_e, cos_e;
|
|
|
|
|
|
|
|
sin_e = sin(MeanObliquity);
|
|
|
|
cos_e = cos(MeanObliquity);
|
|
|
|
|
|
|
|
*alpha = atan2(sin(lambda)*cos_e - tan(beta)*sin_e, cos(lambda));
|
|
|
|
*delta = asin(sin(beta)*cos_e + cos(beta)*sin_e*sin(lambda));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* computing julian dates (assuming gregorian calendar, thus this is
|
|
|
|
* only valid for dates of 1582 oct 15 or later) (after duffett-smith,
|
|
|
|
* section 4) */
|
|
|
|
|
|
|
|
static double julian_date(int y, int m, int d) {
|
|
|
|
/* int y; year (e.g. 19xx) */
|
|
|
|
/* int m; month (jan=1, feb=2, ...) */
|
|
|
|
/* int d; day of month */
|
|
|
|
|
|
|
|
int A, B, C, D;
|
|
|
|
double JD;
|
|
|
|
|
|
|
|
/* lazy test to ensure gregorian calendar */
|
|
|
|
if (y < 1583) {
|
|
|
|
printf("WHOOPS! Julian dates only valid for 1582 oct 15 or later\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((m == 1) || (m == 2)) {
|
|
|
|
y -= 1;
|
|
|
|
m += 12;
|
|
|
|
}
|
|
|
|
|
|
|
|
A = y / 100;
|
|
|
|
B = 2 - A + (A / 4);
|
|
|
|
C = 365.25 * y;
|
|
|
|
D = 30.6001 * (m + 1);
|
|
|
|
|
|
|
|
JD = B + C + D + d + 1720994.5;
|
|
|
|
|
|
|
|
return JD;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* compute greenwich mean sidereal time (GST) corresponding to a given
|
|
|
|
* number of seconds since the unix epoch (after duffett-smith,
|
|
|
|
* section 12) */
|
|
|
|
static double GST(time_t ssue) {
|
|
|
|
/* time_t ssue; seconds since unix epoch */
|
|
|
|
|
|
|
|
double JD;
|
|
|
|
double T, T0;
|
|
|
|
double UT;
|
|
|
|
struct tm *tm;
|
|
|
|
|
|
|
|
tm = gmtime(&ssue);
|
|
|
|
|
|
|
|
JD = julian_date(tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
|
|
|
|
T = (JD - 2451545) / 36525;
|
|
|
|
|
|
|
|
T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558;
|
|
|
|
|
|
|
|
T0 = fmod(T0, 24.0);
|
|
|
|
if (T0 < 0) T0 += 24;
|
|
|
|
|
|
|
|
UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0;
|
|
|
|
|
|
|
|
T0 += UT * 1.002737909;
|
|
|
|
T0 = fmod(T0, 24.0);
|
|
|
|
if (T0 < 0) T0 += 24;
|
|
|
|
|
|
|
|
return T0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* given a particular time (expressed in seconds since the unix
|
|
|
|
* epoch), compute position on the earth (lat, lon) such that sun is
|
|
|
|
* directly overhead. (lat, lon are reported in radians */
|
|
|
|
|
|
|
|
void fgSunPosition(time_t ssue, double *lon, double *lat) {
|
|
|
|
/* time_t ssue; seconds since unix epoch */
|
|
|
|
/* double *lat; (return) latitude */
|
|
|
|
/* double *lon; (return) longitude */
|
|
|
|
|
|
|
|
double lambda;
|
|
|
|
double alpha, delta;
|
|
|
|
double tmp;
|
|
|
|
|
|
|
|
lambda = sun_ecliptic_longitude(ssue);
|
|
|
|
ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta);
|
|
|
|
|
|
|
|
tmp = alpha - (FG_2PI/24)*GST(ssue);
|
|
|
|
if (tmp < -FG_PI) {
|
|
|
|
do tmp += FG_2PI;
|
|
|
|
while (tmp < -FG_PI);
|
|
|
|
} else if (tmp > FG_PI) {
|
|
|
|
do tmp -= FG_2PI;
|
|
|
|
while (tmp < -FG_PI);
|
|
|
|
}
|
|
|
|
|
|
|
|
*lon = tmp;
|
|
|
|
*lat = delta;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
1997-08-13 20:23:49 +00:00
|
|
|
/* update the cur_time_params structure with the current sun position */
|
|
|
|
void fgUpdateSunPos() {
|
|
|
|
struct time_params *t;
|
|
|
|
double sun_gd_lat, sl_radius;
|
|
|
|
static int time_warp = 0;
|
|
|
|
|
|
|
|
t = &cur_time_params;
|
|
|
|
|
1997-08-19 23:55:03 +00:00
|
|
|
time_warp += 300; /* increase this to make the world spin real fast */
|
1997-08-13 20:23:49 +00:00
|
|
|
|
|
|
|
fgSunPosition(time(NULL) + time_warp, &t->sun_lon, &sun_gd_lat);
|
|
|
|
|
|
|
|
fgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &t->sun_gc_lat);
|
|
|
|
|
|
|
|
t->fg_sunpos = fgPolarToCart(t->sun_lon, t->sun_gc_lat, sl_radius);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
1997-08-01 15:27:56 +00:00
|
|
|
/* $Log$
|
1997-08-19 23:55:03 +00:00
|
|
|
/* Revision 1.4 1997/08/19 23:55:09 curt
|
|
|
|
/* Worked on better simulating real lighting.
|
1997-08-01 15:27:56 +00:00
|
|
|
/*
|
1997-08-19 23:55:03 +00:00
|
|
|
* Revision 1.3 1997/08/13 20:23:49 curt
|
|
|
|
* The interface to sunpos now updates a global structure rather than returning
|
|
|
|
* current sun position.
|
|
|
|
*
|
1997-08-13 20:23:49 +00:00
|
|
|
* Revision 1.2 1997/08/06 00:24:32 curt
|
|
|
|
* Working on correct real time sun lighting.
|
|
|
|
*
|
1997-08-06 00:24:22 +00:00
|
|
|
* Revision 1.1 1997/08/01 15:27:56 curt
|
|
|
|
* Initial revision.
|
|
|
|
*
|
1997-08-01 15:27:56 +00:00
|
|
|
*/
|