1
0
Fork 0
flightgear/src/Main/CameraGroup.cxx

1085 lines
42 KiB
C++
Raw Normal View History

// Copyright (C) 2008 Tim Moore
// Copyright (C) 2011 Mathias Froehlich
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "CameraGroup.hxx"
#include "fg_props.hxx"
#include "globals.hxx"
#include "renderer.hxx"
#include "FGEventHandler.hxx"
#include "WindowBuilder.hxx"
#include "WindowSystemAdapter.hxx"
#include <simgear/props/props.hxx>
#include <simgear/structure/OSGUtils.hxx>
#include <simgear/structure/OSGVersion.hxx>
2009-07-15 23:16:13 +00:00
#include <simgear/scene/material/EffectCullVisitor.hxx>
#include <simgear/scene/util/RenderConstants.hxx>
#include <algorithm>
#include <cstring>
#include <string>
#include <osg/Camera>
#include <osg/Geometry>
#include <osg/GraphicsContext>
#include <osg/io_utils>
#include <osg/Math>
#include <osg/Matrix>
#include <osg/Notify>
#include <osg/Program>
#include <osg/Quat>
#include <osg/TexMat>
#include <osg/Vec3d>
#include <osg/Viewport>
#include <osgUtil/IntersectionVisitor>
#include <osgViewer/GraphicsWindow>
2009-07-15 23:16:13 +00:00
#include <osgViewer/Renderer>
static osg::Matrix
invert(const osg::Matrix& matrix)
{
return osg::Matrix::inverse(matrix);
}
/// Returns the zoom factor of the master camera.
/// The reference fov is the historic 55 deg
static double
zoomFactor()
{
double fov = fgGetDouble("/sim/current-view/field-of-view", 55);
if (fov < 1)
fov = 1;
return tan(55*0.5*SG_DEGREES_TO_RADIANS)/tan(fov*0.5*SG_DEGREES_TO_RADIANS);
}
static osg::Vec2d
preMult(const osg::Vec2d& v, const osg::Matrix& m)
{
osg::Vec3d tmp = m.preMult(osg::Vec3(v, 0));
return osg::Vec2d(tmp[0], tmp[1]);
}
static osg::Matrix
relativeProjection(const osg::Matrix& P0, const osg::Matrix& R, const osg::Vec2d ref[2],
const osg::Matrix& pP, const osg::Matrix& pR, const osg::Vec2d pRef[2])
{
// Track the way from one projection space to the other:
// We want
// P = T*S*P0
// where P0 is the projection template sensible for the given window size,
// T is a translation matrix and S a scale matrix.
// We need to determine T and S so that the reference points in the parents
// projection space match the two reference points in this cameras projection space.
// Starting from the parents camera projection space, we get into this cameras
// projection space by the transform matrix:
// P*R*inv(pP*pR) = T*S*P0*R*inv(pP*pR)
// So, at first compute that matrix without T*S and determine S and T from that
// Ok, now osg uses the inverse matrix multiplication order, thus:
osg::Matrix PtoPwithoutTS = invert(pR*pP)*R*P0;
// Compute the parents reference points in the current projection space
// without the yet unknown T and S
osg::Vec2d pRefInThis[2] = {
preMult(pRef[0], PtoPwithoutTS),
preMult(pRef[1], PtoPwithoutTS)
};
// To get the same zoom, rescale to match the parents size
double s = (ref[0] - ref[1]).length()/(pRefInThis[0] - pRefInThis[1]).length();
osg::Matrix S = osg::Matrix::scale(s, s, 1);
// For the translation offset, incorporate the now known scale
// and recompute the position ot the first reference point in the
// currents projection space without the yet unknown T.
pRefInThis[0] = preMult(pRef[0], PtoPwithoutTS*S);
// The translation is then the difference of the reference points
osg::Matrix T = osg::Matrix::translate(osg::Vec3d(ref[0] - pRefInThis[0], 0));
// Compose and return the desired final projection matrix
return P0*S*T;
}
namespace flightgear
{
using namespace osg;
using std::strcmp;
using std::string;
ref_ptr<CameraGroup> CameraGroup::_defaultGroup;
CameraGroup::CameraGroup(osgViewer::Viewer* viewer) :
_viewer(viewer)
{
}
}
namespace
{
using namespace osg;
// Given a projection matrix, return a new one with the same frustum
// sides and new near / far values.
void makeNewProjMat(Matrixd& oldProj, double znear,
double zfar, Matrixd& projection)
{
projection = oldProj;
// Slightly inflate the near & far planes to avoid objects at the
// extremes being clipped out.
znear *= 0.999;
zfar *= 1.001;
// Clamp the projection matrix z values to the range (near, far)
double epsilon = 1.0e-6;
if (fabs(projection(0,3)) < epsilon &&
fabs(projection(1,3)) < epsilon &&
fabs(projection(2,3)) < epsilon) {
// Projection is Orthographic
epsilon = -1.0/(zfar - znear); // Used as a temp variable
projection(2,2) = 2.0*epsilon;
projection(3,2) = (zfar + znear)*epsilon;
} else {
// Projection is Perspective
double trans_near = (-znear*projection(2,2) + projection(3,2)) /
(-znear*projection(2,3) + projection(3,3));
double trans_far = (-zfar*projection(2,2) + projection(3,2)) /
(-zfar*projection(2,3) + projection(3,3));
double ratio = fabs(2.0/(trans_near - trans_far));
double center = -0.5*(trans_near + trans_far);
projection.postMult(osg::Matrixd(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, ratio, 0.0,
0.0, 0.0, center*ratio, 1.0));
}
}
}
namespace flightgear
{
2012-03-10 09:49:01 +01:00
void CameraInfo::updateCameras()
{
for (CameraMap::iterator ii = cameras.begin(); ii != cameras.end(); ++ii ) {
float f = ii->second.scaleFactor;
ii->second.camera->getViewport()->setViewport(x*f, y*f, width*f, height*f);
}
}
osg::Camera* CameraInfo::getCamera(CameraKind k) const
{
CameraMap::const_iterator ii = cameras.find( k );
if (ii == cameras.end())
return 0;
return ii->second.camera.get();
}
osg::Camera* CameraInfo::getMainCamera() const
{
return cameras.find( MAIN_CAMERA )->second.camera.get();
}
int CameraInfo::getMainSlaveIndex() const
{
return cameras.find( MAIN_CAMERA )->second.slaveIndex;
}
void CameraGroup::update(const osg::Vec3d& position,
const osg::Quat& orientation)
{
const Matrix masterView(osg::Matrix::translate(-position)
* osg::Matrix::rotate(orientation.inverse()));
_viewer->getCamera()->setViewMatrix(masterView);
const Matrix& masterProj = _viewer->getCamera()->getProjectionMatrix();
double masterZoomFactor = zoomFactor();
for (CameraList::iterator i = _cameras.begin(); i != _cameras.end(); ++i) {
const CameraInfo* info = i->get();
const View::Slave& slave = _viewer->getSlave(info->getMainSlaveIndex());
#if SG_OSG_VERSION_LESS_THAN(3,0,0)
// refreshes camera viewports (for now)
2012-03-10 09:49:01 +01:00
info->updateCameras();
#endif
Camera* camera = info->getMainCamera();
Matrix viewMatrix;
if (info->flags & GUI) {
viewMatrix = osg::Matrix(); // identifty transform on the GUI camera
} else if ((info->flags & VIEW_ABSOLUTE) != 0)
viewMatrix = slave._viewOffset;
else
viewMatrix = masterView * slave._viewOffset;
camera->setViewMatrix(viewMatrix);
Matrix projectionMatrix;
if (info->flags & GUI) {
projectionMatrix = osg::Matrix::ortho2D(0, info->width, 0, info->height);
} else if ((info->flags & PROJECTION_ABSOLUTE) != 0) {
if (info->flags & ENABLE_MASTER_ZOOM) {
if (info->relativeCameraParent < _cameras.size()) {
// template projection matrix and view matrix of the current camera
osg::Matrix P0 = slave._projectionOffset;
osg::Matrix R = viewMatrix;
// The already known projection and view matrix of the parent camera
const CameraInfo* parentInfo = _cameras[info->relativeCameraParent].get();
RenderStageInfo prsi = parentInfo->cameras.find(CameraInfo::MAIN_CAMERA)->second;
osg::Matrix pP = prsi.camera->getProjectionMatrix();
osg::Matrix pR = prsi.camera->getViewMatrix();
// And the projection matrix derived from P0 so that the reference points match
projectionMatrix = relativeProjection(P0, R, info->thisReference,
pP, pR, info->parentReference);
} else {
// We want to zoom, so take the original matrix and apply the zoom to it.
projectionMatrix = slave._projectionOffset;
projectionMatrix.postMultScale(osg::Vec3d(masterZoomFactor, masterZoomFactor, 1));
}
} else {
projectionMatrix = slave._projectionOffset;
}
} else {
projectionMatrix = masterProj * slave._projectionOffset;
}
CameraInfo::CameraMap::const_iterator ii = info->cameras.find(CameraInfo::FAR_CAMERA);
if (ii == info->cameras.end() || !ii->second.camera.valid()) {
camera->setProjectionMatrix(projectionMatrix);
} else {
Camera* farCamera = ii->second.camera;
farCamera->setViewMatrix(viewMatrix);
double left, right, bottom, top, parentNear, parentFar;
projectionMatrix.getFrustum(left, right, bottom, top,
parentNear, parentFar);
if ((info->flags & FIXED_NEAR_FAR) == 0) {
parentNear = _zNear;
parentFar = _zFar;
}
if (parentFar < _nearField || _nearField == 0.0f) {
camera->setProjectionMatrix(projectionMatrix);
camera->setCullMask(camera->getCullMask()
| simgear::BACKGROUND_BIT);
camera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT);
farCamera->setNodeMask(0);
} else {
Matrix nearProj, farProj;
makeNewProjMat(projectionMatrix, parentNear, _nearField,
nearProj);
makeNewProjMat(projectionMatrix, _nearField, parentFar,
farProj);
camera->setProjectionMatrix(nearProj);
camera->setCullMask(camera->getCullMask()
& ~simgear::BACKGROUND_BIT);
camera->setClearMask(GL_DEPTH_BUFFER_BIT);
farCamera->setProjectionMatrix(farProj);
farCamera->setNodeMask(camera->getNodeMask());
}
}
}
}
void CameraGroup::setCameraParameters(float vfov, float aspectRatio)
{
if (vfov != 0.0f && aspectRatio != 0.0f)
_viewer->getCamera()
->setProjectionMatrixAsPerspective(vfov,
1.0f / aspectRatio,
_zNear, _zFar);
}
double CameraGroup::getMasterAspectRatio() const
{
if (_cameras.empty())
return 0.0;
const CameraInfo* info = _cameras.front();
osg::Camera* camera = info->cameras.find(CameraInfo::MAIN_CAMERA)->second.camera.get();
const osg::Viewport* viewport = camera->getViewport();
if (!viewport) {
return 0.0;
}
return static_cast<double>(viewport->height()) / viewport->width();
}
}
namespace
{
// A raw value for property nodes that references a class member via
// an osg::ref_ptr.
template<class C, class T>
class RefMember : public SGRawValue<T>
{
public:
RefMember (C *obj, T C::*ptr)
: _obj(obj), _ptr(ptr) {}
virtual ~RefMember () {}
virtual T getValue () const
{
return _obj.get()->*_ptr;
}
virtual bool setValue (T value)
{
_obj.get()->*_ptr = value;
return true;
}
virtual SGRawValue<T> * clone () const
{
return new RefMember(_obj.get(), _ptr);
}
private:
ref_ptr<C> _obj;
T C::* const _ptr;
};
template<typename C, typename T>
RefMember<C, T> makeRefMember(C *obj, T C::*ptr)
{
return RefMember<C, T>(obj, ptr);
}
template<typename C, typename T>
void bindMemberToNode(SGPropertyNode* parent, const char* childName,
C* obj, T C::*ptr, T value)
{
SGPropertyNode* valNode = parent->getNode(childName);
RefMember<C, T> refMember = makeRefMember(obj, ptr);
if (!valNode) {
valNode = parent->getNode(childName, true);
valNode->tie(refMember, false);
setValue(valNode, value);
} else {
valNode->tie(refMember, true);
}
}
void buildViewport(flightgear::CameraInfo* info, SGPropertyNode* viewportNode,
const osg::GraphicsContext::Traits *traits)
{
using namespace flightgear;
bindMemberToNode(viewportNode, "x", info, &CameraInfo::x, 0.0);
bindMemberToNode(viewportNode, "y", info, &CameraInfo::y, 0.0);
bindMemberToNode(viewportNode, "width", info, &CameraInfo::width,
static_cast<double>(traits->width));
bindMemberToNode(viewportNode, "height", info, &CameraInfo::height,
static_cast<double>(traits->height));
}
}
namespace flightgear
{
// Mostly copied from osg's osgViewer/View.cpp
static osg::Geometry* createParoramicSphericalDisplayDistortionMesh(
const Vec3& origin, const Vec3& widthVector, const Vec3& heightVector,
double sphere_radius, double collar_radius,
Image* intensityMap = 0, const Matrix& projectorMatrix = Matrix())
{
osg::Vec3d center(0.0,0.0,0.0);
osg::Vec3d eye(0.0,0.0,0.0);
double distance = sqrt(sphere_radius*sphere_radius - collar_radius*collar_radius);
bool flip = false;
bool texcoord_flip = false;
#if 0
osg::Vec3d projector = eye - osg::Vec3d(0.0,0.0, distance);
OSG_INFO<<"createParoramicSphericalDisplayDistortionMesh : Projector position = "<<projector<<std::endl;
OSG_INFO<<"createParoramicSphericalDisplayDistortionMesh : distance = "<<distance<<std::endl;
#endif
// create the quad to visualize.
osg::Geometry* geometry = new osg::Geometry();
geometry->setSupportsDisplayList(false);
osg::Vec3 xAxis(widthVector);
float width = widthVector.length();
xAxis /= width;
osg::Vec3 yAxis(heightVector);
float height = heightVector.length();
yAxis /= height;
int noSteps = 160;
osg::Vec3Array* vertices = new osg::Vec3Array;
osg::Vec2Array* texcoords0 = new osg::Vec2Array;
osg::Vec2Array* texcoords1 = intensityMap==0 ? new osg::Vec2Array : 0;
osg::Vec4Array* colors = new osg::Vec4Array;
#if 0
osg::Vec3 bottom = origin;
osg::Vec3 dx = xAxis*(width/((float)(noSteps-2)));
osg::Vec3 dy = yAxis*(height/((float)(noSteps-1)));
#endif
osg::Vec3 top = origin + yAxis*height;
osg::Vec3 screenCenter = origin + widthVector*0.5f + heightVector*0.5f;
float screenRadius = heightVector.length() * 0.5f;
geometry->getOrCreateStateSet()->setMode(GL_CULL_FACE, osg::StateAttribute::OFF | osg::StateAttribute::PROTECTED);
for(int i=0;i<noSteps;++i)
{
//osg::Vec3 cursor = bottom+dy*(float)i;
for(int j=0;j<noSteps;++j)
{
osg::Vec2 texcoord(double(i)/double(noSteps-1), double(j)/double(noSteps-1));
double theta = texcoord.x() * 2.0 * osg::PI;
double phi = (1.0-texcoord.y()) * osg::PI;
if (texcoord_flip) texcoord.y() = 1.0f - texcoord.y();
osg::Vec3 pos(sin(phi)*sin(theta), sin(phi)*cos(theta), cos(phi));
pos = pos*projectorMatrix;
double alpha = atan2(pos.x(), pos.y());
if (alpha<0.0) alpha += 2.0*osg::PI;
double beta = atan2(sqrt(pos.x()*pos.x() + pos.y()*pos.y()), pos.z());
if (beta<0.0) beta += 2.0*osg::PI;
double gamma = atan2(sqrt(double(pos.x()*pos.x() + pos.y()*pos.y())), double(pos.z()+distance));
if (gamma<0.0) gamma += 2.0*osg::PI;
osg::Vec3 v = screenCenter + osg::Vec3(sin(alpha)*gamma*2.0/osg::PI, -cos(alpha)*gamma*2.0/osg::PI, 0.0f)*screenRadius;
if (flip)
vertices->push_back(osg::Vec3(v.x(), top.y()-(v.y()-origin.y()),v.z()));
else
vertices->push_back(v);
texcoords0->push_back( texcoord );
osg::Vec2 texcoord1(alpha/(2.0*osg::PI), 1.0f - beta/osg::PI);
if (intensityMap)
{
colors->push_back(intensityMap->getColor(texcoord1));
}
else
{
colors->push_back(osg::Vec4(1.0f,1.0f,1.0f,1.0f));
if (texcoords1) texcoords1->push_back( texcoord1 );
}
}
}
// pass the created vertex array to the points geometry object.
geometry->setVertexArray(vertices);
geometry->setColorArray(colors);
geometry->setColorBinding(osg::Geometry::BIND_PER_VERTEX);
geometry->setTexCoordArray(0,texcoords0);
if (texcoords1) geometry->setTexCoordArray(1,texcoords1);
osg::DrawElementsUShort* elements = new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES);
geometry->addPrimitiveSet(elements);
for(int i=0;i<noSteps-1;++i)
{
for(int j=0;j<noSteps-1;++j)
{
int i1 = j+(i+1)*noSteps;
int i2 = j+(i)*noSteps;
int i3 = j+1+(i)*noSteps;
int i4 = j+1+(i+1)*noSteps;
osg::Vec3& v1 = (*vertices)[i1];
osg::Vec3& v2 = (*vertices)[i2];
osg::Vec3& v3 = (*vertices)[i3];
osg::Vec3& v4 = (*vertices)[i4];
if ((v1-screenCenter).length()>screenRadius) continue;
if ((v2-screenCenter).length()>screenRadius) continue;
if ((v3-screenCenter).length()>screenRadius) continue;
if ((v4-screenCenter).length()>screenRadius) continue;
elements->push_back(i1);
elements->push_back(i2);
elements->push_back(i3);
elements->push_back(i1);
elements->push_back(i3);
elements->push_back(i4);
}
}
return geometry;
}
void CameraGroup::buildDistortionCamera(const SGPropertyNode* psNode,
Camera* camera)
{
const SGPropertyNode* texNode = psNode->getNode("texture");
if (!texNode) {
// error
return;
}
string texName = texNode->getStringValue();
TextureMap::iterator itr = _textureTargets.find(texName);
if (itr == _textureTargets.end()) {
// error
return;
}
Viewport* viewport = camera->getViewport();
float width = viewport->width();
float height = viewport->height();
TextureRectangle* texRect = itr->second.get();
double radius = psNode->getDoubleValue("radius", 1.0);
double collar = psNode->getDoubleValue("collar", 0.45);
Geode* geode = new Geode();
geode->addDrawable(createParoramicSphericalDisplayDistortionMesh(
Vec3(0.0f,0.0f,0.0f), Vec3(width,0.0f,0.0f),
Vec3(0.0f,height,0.0f), radius, collar));
// new we need to add the texture to the mesh, we do so by creating a
// StateSet to contain the Texture StateAttribute.
StateSet* stateset = geode->getOrCreateStateSet();
stateset->setTextureAttributeAndModes(0, texRect, StateAttribute::ON);
stateset->setMode(GL_LIGHTING, StateAttribute::OFF);
TexMat* texmat = new TexMat;
texmat->setScaleByTextureRectangleSize(true);
stateset->setTextureAttributeAndModes(0, texmat, osg::StateAttribute::ON);
#if 0
if (!applyIntensityMapAsColours && intensityMap)
{
stateset->setTextureAttributeAndModes(1, new osg::Texture2D(intensityMap), osg::StateAttribute::ON);
}
#endif
// add subgraph to render
camera->addChild(geode);
camera->setClearMask(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
camera->setClearColor(osg::Vec4(0.0, 0.0, 0.0, 1.0));
camera->setComputeNearFarMode(osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR);
camera->setCullingMode(osg::CullSettings::NO_CULLING);
camera->setName("DistortionCorrectionCamera");
}
CameraInfo* CameraGroup::buildCamera(SGPropertyNode* cameraNode)
{
WindowBuilder *wBuild = WindowBuilder::getWindowBuilder();
const SGPropertyNode* windowNode = cameraNode->getNode("window");
GraphicsWindow* window = 0;
int cameraFlags = DO_INTERSECTION_TEST;
if (windowNode) {
// New style window declaration / definition
window = wBuild->buildWindow(windowNode);
} else {
// Old style: suck window params out of camera block
window = wBuild->buildWindow(cameraNode);
}
if (!window) {
return 0;
}
Camera* camera = new Camera;
camera->setAllowEventFocus(false);
camera->setGraphicsContext(window->gc.get());
camera->setViewport(new Viewport);
camera->setCullingMode(CullSettings::SMALL_FEATURE_CULLING
| CullSettings::VIEW_FRUSTUM_CULLING);
camera->setInheritanceMask(CullSettings::ALL_VARIABLES
& ~(CullSettings::CULL_MASK
| CullSettings::CULLING_MODE
#if defined(HAVE_CULLSETTINGS_CLEAR_MASK)
| CullSettings::CLEAR_MASK
#endif
));
osg::Matrix vOff;
const SGPropertyNode* viewNode = cameraNode->getNode("view");
if (viewNode) {
double heading = viewNode->getDoubleValue("heading-deg", 0.0);
double pitch = viewNode->getDoubleValue("pitch-deg", 0.0);
double roll = viewNode->getDoubleValue("roll-deg", 0.0);
double x = viewNode->getDoubleValue("x", 0.0);
double y = viewNode->getDoubleValue("y", 0.0);
double z = viewNode->getDoubleValue("z", 0.0);
// Build a view matrix, which is the inverse of a model
// orientation matrix.
vOff = (Matrix::translate(-x, -y, -z)
* Matrix::rotate(-DegreesToRadians(heading),
Vec3d(0.0, 1.0, 0.0),
-DegreesToRadians(pitch),
Vec3d(1.0, 0.0, 0.0),
-DegreesToRadians(roll),
Vec3d(0.0, 0.0, 1.0)));
if (viewNode->getBoolValue("absolute", false))
cameraFlags |= VIEW_ABSOLUTE;
} else {
// Old heading parameter, works in the opposite direction
double heading = cameraNode->getDoubleValue("heading-deg", 0.0);
vOff.makeRotate(DegreesToRadians(heading), osg::Vec3(0, 1, 0));
}
// Configuring the physical dimensions of a monitor
SGPropertyNode* viewportNode = cameraNode->getNode("viewport", true);
double physicalWidth = viewportNode->getDoubleValue("width", 1024);
double physicalHeight = viewportNode->getDoubleValue("height", 768);
double bezelHeightTop = 0;
double bezelHeightBottom = 0;
double bezelWidthLeft = 0;
double bezelWidthRight = 0;
const SGPropertyNode* physicalDimensionsNode = 0;
if ((physicalDimensionsNode = cameraNode->getNode("physical-dimensions")) != 0) {
physicalWidth = physicalDimensionsNode->getDoubleValue("width", physicalWidth);
physicalHeight = physicalDimensionsNode->getDoubleValue("height", physicalHeight);
const SGPropertyNode* bezelNode = 0;
if ((bezelNode = physicalDimensionsNode->getNode("bezel")) != 0) {
bezelHeightTop = bezelNode->getDoubleValue("top", bezelHeightTop);
bezelHeightBottom = bezelNode->getDoubleValue("bottom", bezelHeightBottom);
bezelWidthLeft = bezelNode->getDoubleValue("left", bezelWidthLeft);
bezelWidthRight = bezelNode->getDoubleValue("right", bezelWidthRight);
}
}
osg::Matrix pOff;
unsigned parentCameraIndex = ~0u;
osg::Vec2d parentReference[2];
osg::Vec2d thisReference[2];
SGPropertyNode* projectionNode = 0;
if ((projectionNode = cameraNode->getNode("perspective")) != 0) {
double fovy = projectionNode->getDoubleValue("fovy-deg", 55.0);
double aspectRatio = projectionNode->getDoubleValue("aspect-ratio",
1.0);
double zNear = projectionNode->getDoubleValue("near", 0.0);
double zFar = projectionNode->getDoubleValue("far", zNear + 20000);
double offsetX = projectionNode->getDoubleValue("offset-x", 0.0);
double offsetY = projectionNode->getDoubleValue("offset-y", 0.0);
double tan_fovy = tan(DegreesToRadians(fovy*0.5));
double right = tan_fovy * aspectRatio * zNear + offsetX;
double left = -tan_fovy * aspectRatio * zNear + offsetX;
double top = tan_fovy * zNear + offsetY;
double bottom = -tan_fovy * zNear + offsetY;
pOff.makeFrustum(left, right, bottom, top, zNear, zFar);
cameraFlags |= PROJECTION_ABSOLUTE;
if (projectionNode->getBoolValue("fixed-near-far", true))
cameraFlags |= FIXED_NEAR_FAR;
} else if ((projectionNode = cameraNode->getNode("frustum")) != 0
|| (projectionNode = cameraNode->getNode("ortho")) != 0) {
double top = projectionNode->getDoubleValue("top", 0.0);
double bottom = projectionNode->getDoubleValue("bottom", 0.0);
double left = projectionNode->getDoubleValue("left", 0.0);
double right = projectionNode->getDoubleValue("right", 0.0);
double zNear = projectionNode->getDoubleValue("near", 0.0);
double zFar = projectionNode->getDoubleValue("far", zNear + 20000);
if (cameraNode->getNode("frustum")) {
pOff.makeFrustum(left, right, bottom, top, zNear, zFar);
cameraFlags |= PROJECTION_ABSOLUTE;
} else {
pOff.makeOrtho(left, right, bottom, top, zNear, zFar);
cameraFlags |= (PROJECTION_ABSOLUTE | ORTHO);
}
if (projectionNode->getBoolValue("fixed-near-far", true))
cameraFlags |= FIXED_NEAR_FAR;
} else if ((projectionNode = cameraNode->getNode("master-perspective")) != 0) {
double zNear = projectionNode->getDoubleValue("eye-distance", 0.4*physicalWidth);
double xoff = projectionNode->getDoubleValue("x-offset", 0);
double yoff = projectionNode->getDoubleValue("y-offset", 0);
double left = -0.5*physicalWidth - xoff;
double right = 0.5*physicalWidth - xoff;
double bottom = -0.5*physicalHeight - yoff;
double top = 0.5*physicalHeight - yoff;
pOff.makeFrustum(left, right, bottom, top, zNear, zNear*1000);
cameraFlags |= PROJECTION_ABSOLUTE | ENABLE_MASTER_ZOOM;
} else if ((projectionNode = cameraNode->getNode("right-of-perspective"))
|| (projectionNode = cameraNode->getNode("left-of-perspective"))
|| (projectionNode = cameraNode->getNode("above-perspective"))
|| (projectionNode = cameraNode->getNode("below-perspective"))
|| (projectionNode = cameraNode->getNode("reference-points-perspective"))) {
std::string name = projectionNode->getStringValue("parent-camera");
for (unsigned i = 0; i < _cameras.size(); ++i) {
if (_cameras[i]->name != name)
continue;
parentCameraIndex = i;
}
if (_cameras.size() <= parentCameraIndex) {
SG_LOG(SG_VIEW, SG_ALERT, "CameraGroup::buildCamera: "
"failed to find parent camera for relative camera!");
return 0;
}
const CameraInfo* parentInfo = _cameras[parentCameraIndex].get();
if (projectionNode->getNameString() == "right-of-perspective") {
double tmp = (parentInfo->physicalWidth + 2*parentInfo->bezelWidthRight)/parentInfo->physicalWidth;
parentReference[0] = osg::Vec2d(tmp, -1);
parentReference[1] = osg::Vec2d(tmp, 1);
tmp = (physicalWidth + 2*bezelWidthLeft)/physicalWidth;
thisReference[0] = osg::Vec2d(-tmp, -1);
thisReference[1] = osg::Vec2d(-tmp, 1);
} else if (projectionNode->getNameString() == "left-of-perspective") {
double tmp = (parentInfo->physicalWidth + 2*parentInfo->bezelWidthLeft)/parentInfo->physicalWidth;
parentReference[0] = osg::Vec2d(-tmp, -1);
parentReference[1] = osg::Vec2d(-tmp, 1);
tmp = (physicalWidth + 2*bezelWidthRight)/physicalWidth;
thisReference[0] = osg::Vec2d(tmp, -1);
thisReference[1] = osg::Vec2d(tmp, 1);
} else if (projectionNode->getNameString() == "above-perspective") {
double tmp = (parentInfo->physicalHeight + 2*parentInfo->bezelHeightTop)/parentInfo->physicalHeight;
parentReference[0] = osg::Vec2d(-1, tmp);
parentReference[1] = osg::Vec2d(1, tmp);
tmp = (physicalHeight + 2*bezelHeightBottom)/physicalHeight;
thisReference[0] = osg::Vec2d(-1, -tmp);
thisReference[1] = osg::Vec2d(1, -tmp);
} else if (projectionNode->getNameString() == "below-perspective") {
double tmp = (parentInfo->physicalHeight + 2*parentInfo->bezelHeightBottom)/parentInfo->physicalHeight;
parentReference[0] = osg::Vec2d(-1, -tmp);
parentReference[1] = osg::Vec2d(1, -tmp);
tmp = (physicalHeight + 2*bezelHeightTop)/physicalHeight;
thisReference[0] = osg::Vec2d(-1, tmp);
thisReference[1] = osg::Vec2d(1, tmp);
} else if (projectionNode->getNameString() == "reference-points-perspective") {
SGPropertyNode* parentNode = projectionNode->getNode("parent", true);
SGPropertyNode* thisNode = projectionNode->getNode("this", true);
SGPropertyNode* pointNode;
pointNode = parentNode->getNode("point", 0, true);
parentReference[0][0] = pointNode->getDoubleValue("x", 0)*2/parentInfo->physicalWidth;
parentReference[0][1] = pointNode->getDoubleValue("y", 0)*2/parentInfo->physicalHeight;
pointNode = parentNode->getNode("point", 1, true);
parentReference[1][0] = pointNode->getDoubleValue("x", 0)*2/parentInfo->physicalWidth;
parentReference[1][1] = pointNode->getDoubleValue("y", 0)*2/parentInfo->physicalHeight;
pointNode = thisNode->getNode("point", 0, true);
thisReference[0][0] = pointNode->getDoubleValue("x", 0)*2/physicalWidth;
thisReference[0][1] = pointNode->getDoubleValue("y", 0)*2/physicalHeight;
pointNode = thisNode->getNode("point", 1, true);
thisReference[1][0] = pointNode->getDoubleValue("x", 0)*2/physicalWidth;
thisReference[1][1] = pointNode->getDoubleValue("y", 0)*2/physicalHeight;
}
pOff = osg::Matrix::perspective(45, physicalWidth/physicalHeight, 1, 20000);
cameraFlags |= PROJECTION_ABSOLUTE | ENABLE_MASTER_ZOOM;
} else {
// old style shear parameters
double shearx = cameraNode->getDoubleValue("shear-x", 0);
double sheary = cameraNode->getDoubleValue("shear-y", 0);
pOff.makeTranslate(-shearx, -sheary, 0);
}
const SGPropertyNode* textureNode = cameraNode->getNode("texture");
if (textureNode) {
string texName = textureNode->getStringValue("name");
int tex_width = textureNode->getIntValue("width");
int tex_height = textureNode->getIntValue("height");
TextureRectangle* texture = new TextureRectangle;
texture->setTextureSize(tex_width, tex_height);
texture->setInternalFormat(GL_RGB);
texture->setFilter(Texture::MIN_FILTER, Texture::LINEAR);
texture->setFilter(Texture::MAG_FILTER, Texture::LINEAR);
texture->setWrap(Texture::WRAP_S, Texture::CLAMP_TO_EDGE);
texture->setWrap(Texture::WRAP_T, Texture::CLAMP_TO_EDGE);
camera->setDrawBuffer(GL_FRONT);
camera->setReadBuffer(GL_FRONT);
camera->setRenderTargetImplementation(Camera::FRAME_BUFFER_OBJECT);
camera->attach(Camera::COLOR_BUFFER, texture);
_textureTargets[texName] = texture;
} else {
camera->setDrawBuffer(GL_BACK);
camera->setReadBuffer(GL_BACK);
}
const SGPropertyNode* psNode = cameraNode->getNode("panoramic-spherical");
bool useMasterSceneGraph = !psNode;
2012-03-10 14:57:43 +01:00
CameraInfo* info = globals->get_renderer()->buildRenderingPipeline(this, cameraFlags, camera, vOff, pOff,
useMasterSceneGraph);
info->name = cameraNode->getStringValue("name");
info->physicalWidth = physicalWidth;
info->physicalHeight = physicalHeight;
info->bezelHeightTop = bezelHeightTop;
info->bezelHeightBottom = bezelHeightBottom;
info->bezelWidthLeft = bezelWidthLeft;
info->bezelWidthRight = bezelWidthRight;
info->relativeCameraParent = parentCameraIndex;
info->parentReference[0] = parentReference[0];
info->parentReference[1] = parentReference[1];
info->thisReference[0] = thisReference[0];
info->thisReference[1] = thisReference[1];
// If a viewport isn't set on the camera, then it's hard to dig it
// out of the SceneView objects in the viewer, and the coordinates
// of mouse events are somewhat bizzare.
buildViewport(info, viewportNode, window->gc->getTraits());
2012-03-10 09:49:01 +01:00
info->updateCameras();
// Distortion camera needs the viewport which is created by addCamera().
if (psNode) {
info->flags = info->flags | VIEW_ABSOLUTE;
buildDistortionCamera(psNode, camera);
}
return info;
}
CameraInfo* CameraGroup::buildGUICamera(SGPropertyNode* cameraNode,
GraphicsWindow* window)
{
WindowBuilder *wBuild = WindowBuilder::getWindowBuilder();
const SGPropertyNode* windowNode = (cameraNode
? cameraNode->getNode("window")
: 0);
2010-12-11 14:29:05 +00:00
if (!window && windowNode) {
// New style window declaration / definition
window = wBuild->buildWindow(windowNode);
}
2010-12-11 14:29:05 +00:00
if (!window) { // buildWindow can fail
SG_LOG(SG_VIEW, SG_WARN, "CameraGroup::buildGUICamera: failed to build a window");
2010-12-11 14:29:05 +00:00
return NULL;
}
Camera* camera = new Camera;
camera->setAllowEventFocus(false);
camera->setGraphicsContext(window->gc.get());
camera->setViewport(new Viewport);
// XXX Camera needs to be drawn last; eventually the render order
// should be assigned by a camera manager.
camera->setRenderOrder(osg::Camera::POST_RENDER, 100);
camera->setClearMask(0);
camera->setInheritanceMask(CullSettings::ALL_VARIABLES
& ~(CullSettings::COMPUTE_NEAR_FAR_MODE
| CullSettings::CULLING_MODE
#if defined(HAVE_CULLSETTINGS_CLEAR_MASK)
| CullSettings::CLEAR_MASK
#endif
));
camera->setComputeNearFarMode(osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR);
camera->setCullingMode(osg::CullSettings::NO_CULLING);
camera->setProjectionResizePolicy(Camera::FIXED);
camera->setReferenceFrame(Transform::ABSOLUTE_RF);
const int cameraFlags = GUI | DO_INTERSECTION_TEST;
2012-03-10 14:57:43 +01:00
CameraInfo* result = globals->get_renderer()->buildRenderingPipeline(this, cameraFlags, camera, Matrixd::identity(),
Matrixd::identity(), false);
SGPropertyNode* viewportNode = cameraNode->getNode("viewport", true);
buildViewport(result, viewportNode, window->gc->getTraits());
// Disable statistics for the GUI camera.
result->getMainCamera()->setStats(0);
2012-03-10 09:49:01 +01:00
result->updateCameras();
return result;
}
CameraGroup* CameraGroup::buildCameraGroup(osgViewer::Viewer* viewer,
SGPropertyNode* gnode)
{
CameraGroup* cgroup = new CameraGroup(viewer);
for (int i = 0; i < gnode->nChildren(); ++i) {
SGPropertyNode* pNode = gnode->getChild(i);
const char* name = pNode->getName();
if (!strcmp(name, "camera")) {
cgroup->buildCamera(pNode);
} else if (!strcmp(name, "window")) {
WindowBuilder::getWindowBuilder()->buildWindow(pNode);
} else if (!strcmp(name, "gui")) {
cgroup->buildGUICamera(pNode);
}
}
bindMemberToNode(gnode, "znear", cgroup, &CameraGroup::_zNear, .1f);
bindMemberToNode(gnode, "zfar", cgroup, &CameraGroup::_zFar, 120000.0f);
bindMemberToNode(gnode, "near-field", cgroup, &CameraGroup::_nearField,
100.0f);
return cgroup;
}
void CameraGroup::setCameraCullMasks(Node::NodeMask nm)
{
for (CameraIterator i = camerasBegin(), e = camerasEnd(); i != e; ++i) {
CameraInfo* info = i->get();
if (info->flags & GUI)
continue;
osg::ref_ptr<osg::Camera> farCamera = info->getCamera(CameraInfo::FAR_CAMERA);
osg::Camera* camera = info->getMainCamera();
if (farCamera.valid() && farCamera->getNodeMask() != 0) {
camera->setCullMask(nm & ~simgear::BACKGROUND_BIT);
camera->setCullMaskLeft(nm & ~simgear::BACKGROUND_BIT);
camera->setCullMaskRight(nm & ~simgear::BACKGROUND_BIT);
farCamera->setCullMask(nm);
farCamera->setCullMaskLeft(nm);
farCamera->setCullMaskRight(nm);
} else {
camera->setCullMask(nm);
camera->setCullMaskLeft(nm);
camera->setCullMaskRight(nm);
}
}
}
void CameraGroup::resized()
{
for (CameraIterator i = camerasBegin(), e = camerasEnd(); i != e; ++i) {
CameraInfo *info = i->get();
const Viewport* viewport = info->getMainCamera()->getViewport();
info->x = viewport->x();
info->y = viewport->y();
info->width = viewport->width();
info->height = viewport->height();
}
}
const CameraInfo* CameraGroup::getGUICamera() const
{
ConstCameraIterator result
= std::find_if(camerasBegin(), camerasEnd(),
FlagTester<CameraInfo>(GUI));
if (result == camerasEnd()) {
return NULL;
}
return *result;
}
Camera* getGUICamera(CameraGroup* cgroup)
{
const CameraInfo* info = cgroup->getGUICamera();
if (!info) {
return NULL;
}
return info->getMainCamera();
}
static bool computeCameraIntersection(const CameraInfo* cinfo,
const osgGA::GUIEventAdapter* ea,
osgUtil::LineSegmentIntersector::Intersections& intersections)
{
using osgUtil::Intersector;
using osgUtil::LineSegmentIntersector;
double x, y;
eventToWindowCoords(ea, x, y);
if (!(cinfo->flags & CameraGroup::DO_INTERSECTION_TEST))
return false;
const Camera* camera = cinfo->getMainCamera();
if (camera->getGraphicsContext() != ea->getGraphicsContext())
return false;
const Viewport* viewport = camera->getViewport();
double epsilon = 0.5;
if (!(x >= viewport->x() - epsilon
&& x < viewport->x() + viewport->width() -1.0 + epsilon
&& y >= viewport->y() - epsilon
&& y < viewport->y() + viewport->height() -1.0 + epsilon))
return false;
Vec4d start(x, y, 0.0, 1.0);
Vec4d end(x, y, 1.0, 1.0);
Matrix windowMat = viewport->computeWindowMatrix();
Matrix startPtMat = Matrix::inverse(camera->getProjectionMatrix()
* windowMat);
Matrix endPtMat;
const Camera* farCamera = cinfo->getCamera( CameraInfo::FAR_CAMERA );
if (!farCamera || farCamera->getNodeMask() == 0)
endPtMat = startPtMat;
else
endPtMat = Matrix::inverse(farCamera->getProjectionMatrix()
* windowMat);
start = start * startPtMat;
start /= start.w();
end = end * endPtMat;
end /= end.w();
ref_ptr<LineSegmentIntersector> picker
= new LineSegmentIntersector(Intersector::VIEW,
Vec3d(start.x(), start.y(), start.z()),
Vec3d(end.x(), end.y(), end.z()));
osgUtil::IntersectionVisitor iv(picker.get());
const_cast<Camera*>(camera)->accept(iv);
if (picker->containsIntersections()) {
intersections = picker->getIntersections();
return true;
}
return false;
}
bool computeIntersections(const CameraGroup* cgroup,
const osgGA::GUIEventAdapter* ea,
osgUtil::LineSegmentIntersector::Intersections& intersections)
{
// test the GUI first
const CameraInfo* guiCamera = cgroup->getGUICamera();
if (guiCamera && computeCameraIntersection(guiCamera, ea, intersections))
return true;
// Find camera that contains event
for (CameraGroup::ConstCameraIterator iter = cgroup->camerasBegin(),
e = cgroup->camerasEnd();
iter != e;
++iter) {
const CameraInfo* cinfo = iter->get();
if (cinfo == guiCamera)
continue;
if (computeCameraIntersection(cinfo, ea, intersections))
return true;
}
intersections.clear();
return false;
}
void warpGUIPointer(CameraGroup* cgroup, int x, int y)
{
using osgViewer::GraphicsWindow;
Camera* guiCamera = getGUICamera(cgroup);
if (!guiCamera)
return;
Viewport* vport = guiCamera->getViewport();
GraphicsWindow* gw
= dynamic_cast<GraphicsWindow*>(guiCamera->getGraphicsContext());
if (!gw)
return;
globals->get_renderer()->getEventHandler()->setMouseWarped();
// Translate the warp request into the viewport of the GUI camera,
// send the request to the window, then transform the coordinates
// for the Viewer's event queue.
double wx = x + vport->x();
double wyUp = vport->height() + vport->y() - y;
double wy;
const GraphicsContext::Traits* traits = gw->getTraits();
if (gw->getEventQueue()->getCurrentEventState()->getMouseYOrientation()
== osgGA::GUIEventAdapter::Y_INCREASING_DOWNWARDS) {
wy = traits->height - wyUp;
} else {
wy = wyUp;
}
gw->getEventQueue()->mouseWarped(wx, wy);
gw->requestWarpPointer(wx, wy);
osgGA::GUIEventAdapter* eventState
= cgroup->getViewer()->getEventQueue()->getCurrentEventState();
double viewerX
= (eventState->getXmin()
+ ((wx / double(traits->width))
* (eventState->getXmax() - eventState->getXmin())));
double viewerY
= (eventState->getYmin()
+ ((wyUp / double(traits->height))
* (eventState->getYmax() - eventState->getYmin())));
cgroup->getViewer()->getEventQueue()->mouseWarped(viewerX, viewerY);
}
}