1
0
Fork 0
flightgear/Simulator/Astro/celestialBody.cxx

177 lines
5.3 KiB
C++
Raw Normal View History

/**************************************************************************
* celestialBody.cxx
* Written by Durk Talsma. Originally started October 1997, for distribution
* with the FlightGear project. Version 2 was written in August and
* September 1998. This code is based upon algorithms and data kindly
* provided by Mr. Paul Schlyter. (pausch@saaf.se).
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* $Id$
**************************************************************************/
#include "celestialBody.hxx"
#include "star.hxx"
#include <Debug/logstream.hxx>
#ifdef FG_MATH_EXCEPTION_CLASH
1998-11-23 21:48:09 +00:00
# define exception c_exception
#endif
#include <math.h>
/**************************************************************************
* void CelestialBody::updatePosition(fgTIME *t, Star *ourSun)
*
* Basically, this member function provides a general interface for
* calculating the right ascension and declinaion. This function is
* used for calculating the planetary positions. For the planets, an
* overloaded member function is provided to additionally calculate the
* planet's magnitude.
* The sun and moon have their own overloaded updatePosition member, as their
* position is calculated an a slightly different manner.
*
* arguments:
* fgTIME t: provides the current time.
* Star *ourSun: the sun's position is needed to convert heliocentric
* coordinates into geocentric coordinates.
*
* return value: none
*
*************************************************************************/
void CelestialBody::updatePosition(FGTime *t, Star *ourSun)
{
double eccAnom, v, ecl, actTime,
xv, yv, xh, yh, zh, xg, yg, zg, xe, ye, ze;
updateOrbElements(t);
actTime = fgCalcActTime(t);
// calcualate the angle bewteen ecliptic and equatorial coordinate system
ecl = DEG_TO_RAD * (23.4393 - 3.563E-7 *actTime);
eccAnom = fgCalcEccAnom(M, e); //calculate the eccentric anomaly
xv = a * (cos(eccAnom) - e);
yv = a * (sqrt (1.0 - e*e) * sin(eccAnom));
v = atan2(yv, xv); // the planet's true anomaly
r = sqrt (xv*xv + yv*yv); // the planet's distance
// calculate the planet's position in 3D space
xh = r * (cos(N) * cos(v+w) - sin(N) * sin(v+w) * cos(i));
yh = r * (sin(N) * cos(v+w) + cos(N) * sin(v+w) * cos(i));
zh = r * (sin(v+w) * sin(i));
// calculate the ecliptic longitude and latitude
xg = xh + ourSun->getxs();
yg = yh + ourSun->getys();
zg = zh;
lonEcl = atan2(yh, xh);
latEcl = atan2(zh, sqrt(xh*xh+yh*yh));
xe = xg;
ye = yg * cos(ecl) - zg * sin(ecl);
ze = yg * sin(ecl) + zg * cos(ecl);
rightAscension = atan2(ye, xe);
declination = atan2(ze, sqrt(xe*xe + ye*ye));
FG_LOG(FG_GENERAL, FG_INFO, "Planet found at : "
<< rightAscension << " (ra), " << declination << " (dec)" );
//calculate some variables specific to calculating the magnitude
//of the planet
R = sqrt (xg*xg + yg*yg + zg*zg);
s = ourSun->getDistance();
// It is possible from these calculations for the argument to acos
// to exceed the valid range for acos(). So we do a little extra
// checking.
double tmp = (r*r + R*R - s*s) / (2*r*R);
if ( tmp > 1.0) {
tmp = 1.0;
} else if ( tmp < -1.0) {
tmp = -1.0;
}
FV = RAD_TO_DEG * acos( tmp );
};
/****************************************************************************
* double CelestialBody::fgCalcEccAnom(double M, double e)
* this private member calculates the eccentric anomaly of a celestial body,
* given its mean anomaly and eccentricity.
*
* -Mean anomaly: the approximate angle between the perihelion and the current
* position. this angle increases uniformly with time.
*
* True anomaly: the actual angle between perihelion and current position.
*
* Eccentric anomaly: this is an auxilary angle, used in calculating the true
* anomaly from the mean anomaly.
*
* -eccentricity. Indicates the amount in which the orbit deviates from a
* circle (0 = circle, 0-1, is ellipse, 1 = parabola, > 1 = hyperbola).
*
* This function is also known as solveKeplersEquation()
*
* arguments:
* M: the mean anomaly
* e: the eccentricity
*
* return value:
* the eccentric anomaly
*
****************************************************************************/
double CelestialBody::fgCalcEccAnom(double M, double e)
{
double
eccAnom, E0, E1, diff;
eccAnom = M + e * sin(M) * (1.0 + e * cos (M));
// iterate to achieve a greater precision for larger eccentricities
if (e > 0.05)
{
E0 = eccAnom;
do
{
E1 = E0 - (E0 - e * sin(E0) - M) / (1 - e *cos(E0));
diff = fabs(E0 - E1);
E0 = E1;
}
while (diff > (DEG_TO_RAD * 0.001));
return E0;
}
return eccAnom;
}