1
0
Fork 0

Changed contributed by Durk Talsma:

- Converted struct fgTIME to class FGTime
- Don't draw textured moon/sun halos when --disable-textures requested
This commit is contained in:
curt 1999-04-08 19:53:46 +00:00
parent bb0688c163
commit fcfbba74db
35 changed files with 401 additions and 349 deletions

View file

@ -50,7 +50,7 @@
* return value: none
*
*************************************************************************/
void CelestialBody::updatePosition(fgTIME *t, Star *ourSun)
void CelestialBody::updatePosition(FGTime *t, Star *ourSun)
{
double eccAnom, v, ecl, actTime,
xv, yv, xh, yh, zh, xg, yg, zg, xe, ye, ze;

View file

@ -61,8 +61,8 @@ protected: // make the data protected, in order to give the inherit
double lonEcl, latEcl;
double fgCalcEccAnom(double M, double e);
double fgCalcActTime(fgTIME *t);
void updateOrbElements(fgTIME *t);
double fgCalcActTime(FGTime *t);
void updateOrbElements(FGTime *t);
public:
CelestialBody(double Nf, double Ns,
@ -70,12 +70,12 @@ public:
double wf, double ws,
double af, double as,
double ef, double es,
double Mf, double Ms, fgTIME *t);
double Mf, double Ms, FGTime *t);
void getPos(double *ra, double *dec);
void getPos(double *ra, double *dec, double *magnitude);
double getLon();
double getLat();
void updatePosition(fgTIME *t, Star *ourSun);
void updatePosition(FGTime *t, Star *ourSun);
};
/*****************************************************************************
@ -103,7 +103,7 @@ inline CelestialBody::CelestialBody(double Nf, double Ns,
double wf, double ws,
double af, double as,
double ef, double es,
double Mf, double Ms, fgTIME *t)
double Mf, double Ms, FGTime *t)
{
NFirst = Nf; NSec = Ns;
iFirst = If; iSec = Is;
@ -115,15 +115,15 @@ inline CelestialBody::CelestialBody(double Nf, double Ns,
};
/****************************************************************************
* inline void CelestialBody::updateOrbElements(fgTIME *t)
* inline void CelestialBody::updateOrbElements(FGTime *t)
* given the current time, this private member calculates the actual
* orbital elements
*
* Arguments: fgTIME *t: the current time:
* Arguments: FGTime *t: the current time:
*
* return value: none
***************************************************************************/
inline void CelestialBody::updateOrbElements(fgTIME *t)
inline void CelestialBody::updateOrbElements(FGTime *t)
{
double actTime = fgCalcActTime(t);
M = DEG_TO_RAD * (MFirst + (MSec * actTime));
@ -134,7 +134,7 @@ inline void CelestialBody::updateOrbElements(fgTIME *t)
a = aFirst + (aSec * actTime);
}
/*****************************************************************************
* inline double CelestialBody::fgCalcActTime(fgTIME *t)
* inline double CelestialBody::fgCalcActTime(FGTime *t)
* this private member function returns the offset in days from the epoch for
* wich the orbital elements are calculated (Jan, 1st, 2000).
*
@ -142,9 +142,9 @@ inline void CelestialBody::updateOrbElements(fgTIME *t)
*
* return value: the (fractional) number of days until Jan 1, 2000.
****************************************************************************/
inline double CelestialBody::fgCalcActTime(fgTIME *t)
inline double CelestialBody::fgCalcActTime(FGTime *t)
{
return (t->mjd - 36523.5);
return (t->getMjd() - 36523.5);
}
/*****************************************************************************

View file

@ -31,13 +31,13 @@
#include "jupiter.hxx"
/*************************************************************************
* Jupiter::Jupiter(fgTIME *t)
* Jupiter::Jupiter(FGTime *t)
* Public constructor for class Jupiter
* Argument: The current time.
* the hard coded orbital elements for Jupiter are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Jupiter::Jupiter(fgTIME *t) :
Jupiter::Jupiter(FGTime *t) :
CelestialBody(100.4542, 2.7685400E-5,
1.3030, -1.557E-7,
273.8777, 1.6450500E-5,
@ -48,13 +48,13 @@ Jupiter::Jupiter(fgTIME *t) :
}
/*************************************************************************
* void Jupiter::updatePosition(fgTIME *t, Star *ourSun)
* void Jupiter::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Jupiter, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Jupiter specific equation
*************************************************************************/
void Jupiter::updatePosition(fgTIME *t, Star *ourSun)
void Jupiter::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);
magnitude = -9.25 + 5*log10( r*R ) + 0.014 * FV;

View file

@ -31,8 +31,8 @@
class Jupiter : public CelestialBody
{
public:
Jupiter (fgTIME *t);
void updatePosition(fgTIME *t, Star *ourSun);
Jupiter (FGTime *t);
void updatePosition(FGTime *t, Star *ourSun);
};
#endif // _JUPITER_HXX_

View file

@ -30,13 +30,13 @@
#include "mars.hxx"
/*************************************************************************
* Mars::Mars(fgTIME *t)
* Mars::Mars(FGTime *t)
* Public constructor for class Mars
* Argument: The current time.
* the hard coded orbital elements for Mars are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Mars::Mars(fgTIME *t) :
Mars::Mars(FGTime *t) :
CelestialBody(49.55740, 2.1108100E-5,
1.8497, -1.78E-8,
286.5016, 2.9296100E-5,
@ -46,13 +46,13 @@ Mars::Mars(fgTIME *t) :
{
}
/*************************************************************************
* void Mars::updatePosition(fgTIME *t, Star *ourSun)
* void Mars::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Mars, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Mars specific equation
*************************************************************************/
void Mars::updatePosition(fgTIME *t, Star *ourSun)
void Mars::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);
magnitude = -1.51 + 5*log10( r*R ) + 0.016 * FV;

View file

@ -31,8 +31,8 @@
class Mars : public CelestialBody
{
public:
Mars ( fgTIME *t);
void updatePosition(fgTIME *t, Star *ourSun);
Mars ( FGTime *t);
void updatePosition(FGTime *t, Star *ourSun);
};
#endif // _MARS_HXX_

View file

@ -30,13 +30,13 @@
#include "mercury.hxx"
/*************************************************************************
* Mercury::Mercury(fgTIME *t)
* Mercury::Mercury(FGTime *t)
* Public constructor for class Mercury
* Argument: The current time.
* the hard coded orbital elements for Mercury are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Mercury::Mercury(fgTIME *t) :
Mercury::Mercury(FGTime *t) :
CelestialBody (48.33130, 3.2458700E-5,
7.0047, 5.00E-8,
29.12410, 1.0144400E-5,
@ -46,13 +46,13 @@ Mercury::Mercury(fgTIME *t) :
{
}
/*************************************************************************
* void Mercury::updatePosition(fgTIME *t, Star *ourSun)
* void Mercury::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Mercury, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Mercury specific equation
*************************************************************************/
void Mercury::updatePosition(fgTIME *t, Star *ourSun)
void Mercury::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);
magnitude = -0.36 + 5*log10( r*R ) + 0.027 * FV + 2.2E-13 * pow(FV, 6);

View file

@ -31,8 +31,8 @@
class Mercury : public CelestialBody
{
public:
Mercury ( fgTIME *t);
void updatePosition(fgTIME *t, Star* ourSun);
Mercury ( FGTime *t);
void updatePosition(FGTime *t, Star* ourSun);
};
#endif // _MERURY_HXX_

View file

@ -29,6 +29,7 @@
#include <Debug/logstream.hxx>
#include <Objects/texload.h>
#include <Main/options.hxx>
#ifdef __BORLANDC__
# define exception c_exception
@ -37,14 +38,14 @@
/*************************************************************************
* Moon::Moon(fgTIME *t)
* Moon::Moon(FGTime *t)
* Public constructor for class Moon. Initializes the orbital elements and
* sets up the moon texture.
* Argument: The current time.
* the hard coded orbital elements for Moon are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Moon::Moon(fgTIME *t) :
Moon::Moon(FGTime *t) :
CelestialBody(125.1228, -0.0529538083,
5.1454, 0.00000,
318.0634, 0.1643573223,
@ -184,12 +185,12 @@ void Moon::setHalo()
/*****************************************************************************
* void Moon::updatePosition(fgTIME *t, Star *ourSun)
* void Moon::updatePosition(FGTime *t, Star *ourSun)
* this member function calculates the actual topocentric position (i.e.)
* the position of the moon as seen from the current position on the surface
* of the moon.
****************************************************************************/
void Moon::updatePosition(fgTIME *t, Star *ourSun)
void Moon::updatePosition(FGTime *t, Star *ourSun)
{
double
eccAnom, ecl, actTime,
@ -279,7 +280,7 @@ void Moon::updatePosition(fgTIME *t, Star *ourSun)
if (geoRa < 0)
geoRa += (2*FG_PI);
HA = t->lst - (3.8197186 * geoRa);
HA = t->getLst() - (3.8197186 * geoRa);
g = atan (tan(gclat) / cos ((HA / 3.8197186)));
rightAscension = geoRa - mpar * rho * cos(gclat) * sin(HA) / cos (geoDec);
declination = geoDec - mpar * rho * sin (gclat) * sin (g - geoDec) / sin(g);
@ -341,19 +342,22 @@ void Moon::newImage()
"Ra = (" << (RAD_TO_DEG *rightAscension)
<< "), Dec= (" << (RAD_TO_DEG *declination) << ")" );
xglTranslatef(0.0, 58600.0, 0.0);
glEnable(GL_TEXTURE_2D); // TEXTURE ENABLED
glEnable(GL_BLEND); // BLEND ENABLED
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBindTexture(GL_TEXTURE_2D, moon_halotexid);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-5000, 0.0, -5000);
glTexCoord2f(1.0f, 0.0f); glVertex3f( 5000, 0.0, -5000);
glTexCoord2f(1.0f, 1.0f); glVertex3f( 5000, 0.0, 5000);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-5000, 0.0, 5000);
glEnd();
glEnable(GL_BLEND); // BLEND ENABLED
if (current_options.get_textures())
{
glBlendFunc(GL_SRC_ALPHA, GL_ONE);
glEnable(GL_TEXTURE_2D); // TEXTURE ENABLED
glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBindTexture(GL_TEXTURE_2D, moon_halotexid);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-5000, 0.0, -5000);
glTexCoord2f(1.0f, 0.0f); glVertex3f( 5000, 0.0, -5000);
glTexCoord2f(1.0f, 1.0f); glVertex3f( 5000, 0.0, 5000);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-5000, 0.0, 5000);
glEnd();
}
xglEnable(GL_LIGHTING); // LIGHTING ENABLED
xglEnable( GL_LIGHT0 );
@ -368,10 +372,12 @@ void Moon::newImage()
glBlendFunc(GL_ONE, GL_ONE);
//glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBindTexture(GL_TEXTURE_2D, moon_texid);
//glDisable(GL_LIGHTING); // LIGHTING DISABLED
gluQuadricTexture(moonObject, GL_TRUE );
if (current_options.get_textures())
{
glBindTexture(GL_TEXTURE_2D, moon_texid);
//glDisable(GL_LIGHTING); // LIGHTING DISABLED
gluQuadricTexture(moonObject, GL_TRUE );
}
gluSphere(moonObject, moonSize, 12, 12 );
glDisable(GL_TEXTURE_2D); // TEXTURE DISABLED
glDisable(GL_BLEND); // BLEND DISABLED

View file

@ -46,9 +46,9 @@ private:
void setHalo();
public:
Moon ( fgTIME *t);
Moon ( FGTime *t);
~Moon();
void updatePosition(fgTIME *t, Star *ourSun);
void updatePosition(FGTime *t, Star *ourSun);
void newImage();
};

View file

@ -30,13 +30,13 @@
#include "neptune.hxx"
/*************************************************************************
* Neptune::Neptune(fgTIME *t)
* Neptune::Neptune(FGTime *t)
* Public constructor for class Neptune
* Argument: The current time.
* the hard coded orbital elements for Neptune are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Neptune::Neptune(fgTIME *t) :
Neptune::Neptune(FGTime *t) :
CelestialBody(131.7806, 3.0173000E-5,
1.7700, -2.550E-7,
272.8461, -6.027000E-6,
@ -46,13 +46,13 @@ Neptune::Neptune(fgTIME *t) :
{
}
/*************************************************************************
* void Neptune::updatePosition(fgTIME *t, Star *ourSun)
* void Neptune::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Neptune, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Neptune specific equation
*************************************************************************/
void Neptune::updatePosition(fgTIME *t, Star *ourSun)
void Neptune::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);
magnitude = -6.90 + 5*log10 (r*R) + 0.001 *FV;

View file

@ -31,8 +31,8 @@
class Neptune : public CelestialBody
{
public:
Neptune ( fgTIME *t);
void updatePosition(fgTIME *t, Star *ourSun);
Neptune ( FGTime *t);
void updatePosition(FGTime *t, Star *ourSun);
};
#endif // _NEPTUNE_HXX_

View file

@ -30,7 +30,7 @@
class Pluto : public CelestialBody
{
public:
Pluto ( fgTIME t);
Pluto ( FGTime t);
};
#endif // _PLUTO_HXX_

View file

@ -30,13 +30,13 @@
#include "saturn.hxx"
/*************************************************************************
* Saturn::Saturn(fgTIME *t)
* Saturn::Saturn(FGTime *t)
* Public constructor for class Saturn
* Argument: The current time.
* the hard coded orbital elements for Saturn are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Saturn::Saturn(fgTIME *t) :
Saturn::Saturn(FGTime *t) :
CelestialBody(113.6634, 2.3898000E-5,
2.4886, -1.081E-7,
339.3939, 2.9766100E-5,
@ -47,13 +47,13 @@ Saturn::Saturn(fgTIME *t) :
}
/*************************************************************************
* void Saturn::updatePosition(fgTIME *t, Star *ourSun)
* void Saturn::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Saturn, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Saturn specific equation
*************************************************************************/
void Saturn::updatePosition(fgTIME *t, Star *ourSun)
void Saturn::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);

View file

@ -31,8 +31,8 @@
class Saturn : public CelestialBody
{
public:
Saturn ( fgTIME *t);
void updatePosition(fgTIME *t, Star *ourSun);
Saturn ( FGTime *t);
void updatePosition(FGTime *t, Star *ourSun);
};
#endif // _SATURN_HXX_

View file

@ -45,10 +45,10 @@
/***************************************************************************
* default constructor for class SolarSystem:
* or course there can only be one way to create an entire solar system -:) )
* the fgTIME argument is needed to properly initialize the the current orbital
* the FGTime argument is needed to properly initialize the the current orbital
* elements
*************************************************************************/
SolarSystem::SolarSystem(fgTIME *t)
SolarSystem::SolarSystem(FGTime *t)
{
if (theSolarSystem)
{
@ -96,7 +96,7 @@ SolarSystem::~SolarSystem()
void SolarSystem::rebuild()
{
//fgLIGHT *l = &cur_light_params;
fgTIME *t = &cur_time_params;
FGTime *t = FGTime::cur_time_params;
//float x, y, z;
//double sun_angle;
double ra, dec;

View file

@ -60,7 +60,7 @@ private:
public:
SolarSystem(fgTIME *t);
SolarSystem(FGTime *t);
CelestialBody *getSun();
CelestialBody *getMoon();
~SolarSystem();

View file

@ -29,10 +29,11 @@
#include <Time/sunpos.hxx>
#include <Debug/logstream.hxx>
#include <Time/light.hxx>
#include <Main/options.hxx>
#include "star.hxx"
/*************************************************************************
* Star::Star(fgTIME *t)
* Star::Star(FGTime *t)
* Public constructor for class Star
* Argument: The current time.
* the hard coded orbital elements our sun are passed to
@ -40,7 +41,7 @@
* note that the word sun is avoided, in order to prevent some compilation
* problems on sun systems
************************************************************************/
Star::Star(fgTIME *t) :
Star::Star(FGTime *t) :
CelestialBody (0.000000, 0.0000000000,
0.0000, 0.00000,
282.9404, 4.7093500E-5,
@ -144,11 +145,11 @@ void Star::setTexture()
//free(textureBuf);
}
/*************************************************************************
* void Jupiter::updatePosition(fgTIME *t, Star *ourSun)
* void Jupiter::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of our sun.
*************************************************************************/
void Star::updatePosition(fgTIME *t)
void Star::updatePosition(FGTime *t)
{
double
actTime, eccAnom,
@ -232,27 +233,29 @@ void Star::newImage(void)
xglRotatef(((RAD_TO_DEG * rightAscension)- 90.0), 0.0, 0.0, 1.0);
xglRotatef((RAD_TO_DEG * declination), 1.0, 0.0, 0.0);
xglTranslatef(0,60000,0);
glEnable(GL_TEXTURE_2D); // TEXTURE ENABLED
glEnable(GL_BLEND); // BLEND ENABLED
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_BLEND);
//glDisable(GL_LIGHTING);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
//glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBindTexture(GL_TEXTURE_2D, sun_texid);
if (current_options.get_textures())
{
glEnable(GL_TEXTURE_2D); // TEXTURE ENABLED
glEnable(GL_BLEND); // BLEND ENABLED
//glEnable(GL_TEXTURE_2D);
//glEnable(GL_BLEND);
//glDisable(GL_LIGHTING);
glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
//glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glBindTexture(GL_TEXTURE_2D, sun_texid);
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-5000, 0.0, -5000);
glTexCoord2f(1.0f, 0.0f); glVertex3f( 5000, 0.0, -5000);
glTexCoord2f(1.0f, 1.0f); glVertex3f( 5000, 0.0, 5000);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-5000, 0.0, 5000);
glEnd();
glBegin(GL_QUADS);
glTexCoord2f(0.0f, 0.0f); glVertex3f(-5000, 0.0, -5000);
glTexCoord2f(1.0f, 0.0f); glVertex3f( 5000, 0.0, -5000);
glTexCoord2f(1.0f, 1.0f); glVertex3f( 5000, 0.0, 5000);
glTexCoord2f(0.0f, 1.0f); glVertex3f(-5000, 0.0, 5000);
glEnd();
}
xglDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
}
glPopMatrix();
xglDisable(GL_TEXTURE_2D);
glDisable(GL_BLEND);
glPushMatrix();
{
xglRotatef(((RAD_TO_DEG * rightAscension)- 90.0), 0.0, 0.0, 1.0);
@ -265,7 +268,3 @@ void Star::newImage(void)
glDisable(GL_BLEND); // BLEND DISABLED
}
}

View file

@ -41,9 +41,9 @@ private:
void setTexture();
public:
Star (fgTIME *t);
Star (FGTime *t);
~Star();
void updatePosition(fgTIME *t);
void updatePosition(FGTime *t);
double getM();
double getw();
//double getLon();

View file

@ -221,12 +221,12 @@ int fgStarsInit( void ) {
void fgStarsRender( void ) {
FGInterface *f;
fgLIGHT *l;
fgTIME *t;
FGTime *t;
int i;
f = current_aircraft.fdm_state;
l = &cur_light_params;
t = &cur_time_params;
t = FGTime::cur_time_params;
// FG_PI_2 + 0.1 is about 6 degrees after sundown and before sunrise

View file

@ -39,8 +39,7 @@ int fgStarsInit( void );
// Draw the Stars
void fgStarsRender( void );
// [no longer used?] extern struct OrbElements pltOrbElements[9];
extern fgTIME cur_time_params;
// [no longer used?] extern FGTime cur_time_params;
#endif // _STARS_HXX

View file

@ -30,13 +30,13 @@
#include "uranus.hxx"
/*************************************************************************
* Uranus::Uranus(fgTIME *t)
* Uranus::Uranus(FGTime *t)
* Public constructor for class Uranus
* Argument: The current time.
* the hard coded orbital elements for Uranus are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Uranus::Uranus(fgTIME *t) :
Uranus::Uranus(FGTime *t) :
CelestialBody(74.00050, 1.3978000E-5,
0.7733, 1.900E-8,
96.66120, 3.0565000E-5,
@ -47,13 +47,13 @@ Uranus::Uranus(fgTIME *t) :
}
/*************************************************************************
* void Uranus::updatePosition(fgTIME *t, Star *ourSun)
* void Uranus::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Uranus, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Uranus specific equation
*************************************************************************/
void Uranus::updatePosition(fgTIME *t, Star *ourSun)
void Uranus::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);
magnitude = -7.15 + 5*log10( r*R) + 0.001 * FV;

View file

@ -31,8 +31,8 @@
class Uranus : public CelestialBody
{
public:
Uranus ( fgTIME *t);
void updatePosition(fgTIME *t, Star *ourSun);
Uranus ( FGTime *t);
void updatePosition(FGTime *t, Star *ourSun);
};
#endif // _URANUS_HXX_

View file

@ -30,13 +30,13 @@
#include "venus.hxx"
/*************************************************************************
* Venus::Venus(fgTIME *t)
* Venus::Venus(FGTime *t)
* Public constructor for class Venus
* Argument: The current time.
* the hard coded orbital elements for Venus are passed to
* CelestialBody::CelestialBody();
************************************************************************/
Venus::Venus(fgTIME *t) :
Venus::Venus(FGTime *t) :
CelestialBody(76.67990, 2.4659000E-5,
3.3946, 2.75E-8,
54.89100, 1.3837400E-5,
@ -47,13 +47,13 @@ Venus::Venus(fgTIME *t) :
}
/*************************************************************************
* void Venus::updatePosition(fgTIME *t, Star *ourSun)
* void Venus::updatePosition(FGTime *t, Star *ourSun)
*
* calculates the current position of Venus, by calling the base class,
* CelestialBody::updatePosition(); The current magnitude is calculated using
* a Venus specific equation
*************************************************************************/
void Venus::updatePosition(fgTIME *t, Star *ourSun)
void Venus::updatePosition(FGTime *t, Star *ourSun)
{
CelestialBody::updatePosition(t, ourSun);
magnitude = -4.34 + 5*log10( r*R ) + 0.013 * FV + 4.2E-07 * pow(FV,3);

View file

@ -31,8 +31,8 @@
class Venus : public CelestialBody
{
public:
Venus ( fgTIME *t);
void updatePosition(fgTIME *t, Star *ourSun);
Venus ( FGTime *t);
void updatePosition(FGTime *t, Star *ourSun);
};
#endif // _VENUS_HXX_

View file

@ -1,6 +1,6 @@
#!/bin/sh
WINDOW=NO
WINDOW=YES
if [ $WINDOW = "YES" ]; then
# in a window (slow hack)

View file

@ -69,14 +69,14 @@ static void local_update_sky_and_lighting_params( void ) {
// Handle keyboard events
void GLUTkey(unsigned char k, int x, int y) {
FGInterface *f;
fgTIME *t;
FGTime *t;
FGView *v;
FGWeather *w;
float fov, tmp;
static bool winding_ccw = true;
f = current_aircraft.fdm_state;
t = &cur_time_params;
t = FGTime::cur_time_params;
v = &current_view;
w = &current_weather;
@ -141,11 +141,11 @@ void GLUTkey(unsigned char k, int x, int y) {
fgHUDInit2(&current_aircraft);
return;
case 77: // M key
t->warp -= 60;
t->adjust_warp(-60);
local_update_sky_and_lighting_params();
return;
case 84: // T key
t->warp_delta -= 30;
t->adjust_warp_delta(-30);
local_update_sky_and_lighting_params();
return;
case 87: // W key
@ -248,11 +248,11 @@ void GLUTkey(unsigned char k, int x, int y) {
fgHUDInit(&current_aircraft); // normal HUD
return;
case 109: // m key
t->warp += 60;
t->adjust_warp (+60);
local_update_sky_and_lighting_params();
return;
case 112: // p key
t->pause = !t->pause;
t->togglePauseMode();
// printf position and attitude information
FG_LOG( FG_INPUT, FG_INFO,
"Lon = " << f->get_Longitude() * RAD_TO_DEG
@ -264,7 +264,7 @@ void GLUTkey(unsigned char k, int x, int y) {
<< " Pitch = " << f->get_Theta() * RAD_TO_DEG );
return;
case 116: // t key
t->warp_delta += 30;
t->adjust_warp_delta (+30);
local_update_sky_and_lighting_params();
return;
case 120: // X key

View file

@ -225,7 +225,7 @@ static void fgUpdateInstrViewParams( void ) {
// Update all Visuals (redraws anything graphics related)
static void fgRenderFrame( void ) {
fgLIGHT *l = &cur_light_params;
fgTIME *t = &cur_time_params;
FGTime *t = FGTime::cur_time_params;
FGView *v = &current_view;
double angle;
@ -298,7 +298,7 @@ static void fgRenderFrame( void ) {
xglTranslatef( view_pos.x(), view_pos.y(), view_pos.z() );
// Rotate based on gst (sidereal time)
// note: constant should be 15.041085, Curt thought it was 15
angle = t->gst * 15.041085;
angle = t->getGst() * 15.041085;
// printf("Rotating astro objects by %.2f degrees\n",angle);
xglRotatef( angle, 0.0, 0.0, -1.0 );
@ -363,7 +363,7 @@ static void fgRenderFrame( void ) {
void fgUpdateTimeDepCalcs(int multi_loop, int remainder) {
FGInterface *f = current_aircraft.fdm_state;
fgLIGHT *l = &cur_light_params;
fgTIME *t = &cur_time_params;
FGTime *t = FGTime::cur_time_params;
FGView *v = &current_view;
int i;
@ -372,7 +372,7 @@ void fgUpdateTimeDepCalcs(int multi_loop, int remainder) {
multi_loop = DEFAULT_MULTILOOP;
}
if ( !t->pause ) {
if ( !t->getPause() ) {
// run Autopilot system
fgAPRun();
@ -442,7 +442,7 @@ static const double alt_adjust_m = alt_adjust_ft * FEET_TO_METER;
// for the next move and update the display?
static void fgMainLoop( void ) {
FGInterface *f;
fgTIME *t;
FGTime *t;
static long remainder = 0;
long elapsed, multi_loop;
// int i;
@ -451,7 +451,7 @@ static void fgMainLoop( void ) {
static int frames = 0;
f = current_aircraft.fdm_state;
t = &cur_time_params;
t = FGTime::cur_time_params;
FG_LOG( FG_ALL, FG_DEBUG, "Running Main Loop");
FG_LOG( FG_ALL, FG_DEBUG, "======= ==== ====");
@ -500,7 +500,7 @@ static void fgMainLoop( void ) {
f->get_Altitude() * FEET_TO_METER); */
// update "time"
fgTimeUpdate(f, t);
t->update(f);
// Get elapsed time (in usec) for this past frame
elapsed = fgGetTimeInterval();
@ -509,13 +509,13 @@ static void fgMainLoop( void ) {
<< ", previous remainder is = " << remainder );
// Calculate frame rate average
if ( (t->cur_time != last_time) && (last_time > 0) ) {
if ( (t->get_cur_time() != last_time) && (last_time > 0) ) {
general.set_frame_rate( frames );
FG_LOG( FG_ALL, FG_DEBUG,
"--> Frame rate is = " << general.get_frame_rate() );
frames = 0;
}
last_time = t->cur_time;
last_time = t->get_cur_time();
++frames;
/* old fps calculation
@ -995,5 +995,3 @@ int main( int argc, char **argv ) {
// we never actually get here ... but just in case ... :-)
return(0);
}

View file

@ -167,7 +167,7 @@ int fgInitGeneral( void ) {
}
#endif
return ( 1 );
return 1;
}
@ -177,9 +177,11 @@ int fgInitGeneral( void ) {
// Returns non-zero if a problem encountered.
int fgInitSubsystems( void )
{
FGTime::cur_time_params = new FGTime();
FGInterface *f; // assigned later
fgLIGHT *l = &cur_light_params;
fgTIME *t = &cur_time_params;
FGTime *t = FGTime::cur_time_params;
FGView *v = &current_view;
FG_LOG( FG_GENERAL, FG_INFO, "Initialize Subsystems");
@ -301,8 +303,8 @@ int fgInitSubsystems( void )
fgEVENT::FG_EVENT_READY, 60000 );
// Initialize the time dependent variables
fgTimeInit(t);
fgTimeUpdate(f, t);
t->init();
t->update(f);
// Initialize view parameters
FG_LOG( FG_GENERAL, FG_DEBUG, "Before v->init()");
@ -412,5 +414,3 @@ int fgInitSubsystems( void )
return(1);
}

View file

@ -231,23 +231,23 @@ static void send_nmea_out( fgIOCHANNEL *p ) {
int deg;
double min;
FGInterface *f;
fgTIME *t;
// run once every two seconds
if ( p->last_time == cur_time_params.cur_time ) {
return;
}
p->last_time = cur_time_params.cur_time;
if ( cur_time_params.cur_time % 2 != 0 ) {
return;
}
FGTime *t;
f = current_aircraft.fdm_state;
t = &cur_time_params;
t = FGTime::cur_time_params;
// run once every two seconds
if ( p->last_time == t->get_cur_time() ) {
return;
}
p->last_time = t->get_cur_time();
if ( t->get_cur_time() % 2 != 0 ) {
return;
}
char utc[10];
sprintf( utc, "%02d%02d%02d",
t->gmt->tm_hour, t->gmt->tm_min, t->gmt->tm_sec );
t->getGmt()->tm_hour, t->getGmt()->tm_min, t->getGmt()->tm_sec );
char lat[20];
double latd = f->get_Latitude() * RAD_TO_DEG;
@ -286,8 +286,8 @@ static void send_nmea_out( fgIOCHANNEL *p ) {
sprintf( altitude_ft, "%02d", (int)f->get_Altitude() );
char date[10];
sprintf( date, "%02d%02d%02d",
t->gmt->tm_mday, t->gmt->tm_mon+1, t->gmt->tm_year );
sprintf( date, "%02d%02d%02d", t->getGmt()->tm_mday,
t->getGmt()->tm_mon+1, t->getGmt()->tm_year );
// $GPRMC,HHMMSS,A,DDMM.MMM,N,DDDMM.MMM,W,XXX.X,XXX.X,DDMMYY,XXX.X,E*XX
sprintf( rmc, "GPRMC,%s,A,%s,%s,%s,%s,%s,0.000,E",
@ -330,23 +330,23 @@ static void send_garmin_out( fgIOCHANNEL *p ) {
int deg;
double min;
FGInterface *f;
fgTIME *t;
FGTime *t;
f = current_aircraft.fdm_state;
t = FGTime::cur_time_params;
// run once per second
if ( p->last_time == cur_time_params.cur_time ) {
if ( p->last_time == t->get_cur_time() ) {
return;
}
p->last_time = cur_time_params.cur_time;
if ( cur_time_params.cur_time % 2 != 0 ) {
p->last_time = t->get_cur_time();
if ( t->get_cur_time() % 2 != 0 ) {
return;
}
f = current_aircraft.fdm_state;
t = &cur_time_params;
char utc[10];
sprintf( utc, "%02d%02d%02d",
t->gmt->tm_hour, t->gmt->tm_min, t->gmt->tm_sec );
t->getGmt()->tm_hour, t->getGmt()->tm_min, t->getGmt()->tm_sec );
char lat[20];
double latd = f->get_Latitude() * RAD_TO_DEG;
@ -385,8 +385,8 @@ static void send_garmin_out( fgIOCHANNEL *p ) {
sprintf( altitude_ft, "%02d", (int)f->get_Altitude() );
char date[10];
sprintf( date, "%02d%02d%02d",
t->gmt->tm_mday, t->gmt->tm_mon+1, t->gmt->tm_year );
sprintf( date, "%02d%02d%02d", t->getGmt()->tm_mday,
t->getGmt()->tm_mon+1, t->getGmt()->tm_year );
// $GPRMC,HHMMSS,A,DDMM.MMM,N,DDDMM.MMM,W,XXX.X,XXX.X,DDMMYY,XXX.X,E*XX
sprintf( rmc, "GPRMC,%s,A,%s,%s,%s,%s,%s,000.0,E",
@ -463,5 +463,3 @@ void fgSerialProcess() {
}
}
}

View file

@ -63,35 +63,38 @@
#define DEGHR(x) ((x)/15.)
#define RADHR(x) DEGHR(x*RAD_TO_DEG)
// #define MK_TIME_IS_GMT 0 // default value
// #define TIME_ZONE_OFFSET_WORK 0 // default value
fgTIME cur_time_params;
FGTime::FGTime()
{
if (cur_time_params) {
FG_LOG( FG_GENERAL, FG_ALERT,
"Error: only one instance of FGTime allowed" );
exit(-1);
}
cur_time_params = this;
}
// Force an update of the sky and lighting parameters
static void local_update_sky_and_lighting_params( void ) {
// fgSunInit();
SolarSystem::theSolarSystem->rebuild();
cur_light_params.Update();
fgSkyColorsInit();
FGTime::~FGTime()
{
}
// Initialize the time dependent variables
void fgTimeInit(fgTIME *t) {
void FGTime::init()
{
FG_LOG( FG_EVENT, FG_INFO, "Initializing Time" );
t->gst_diff = -9999.0;
gst_diff = -9999.0;
FG_LOG( FG_EVENT, FG_DEBUG,
"time offset = " << current_options.get_time_offset() );
t->warp = current_options.get_time_offset();
t->warp_delta = 0;
t->pause = current_options.get_pause();
warp = current_options.get_time_offset();
warp_delta = 0;
pause = current_options.get_pause();
}
@ -99,25 +102,26 @@ void fgTimeInit(fgTIME *t) {
// modified Julian date (number of days elapsed since 1900 jan 0.5),
// mjd. Adapted from Xephem.
double cal_mjd (int mn, double dy, int yr) {
static double last_mjd, last_dy;
double mjd;
static int last_mn, last_yr;
void FGTime::cal_mjd (int mn, double dy, int yr)
{
//static double last_mjd, last_dy;
//double mjd;
//static int last_mn, last_yr;
int b, d, m, y;
long c;
if (mn == last_mn && yr == last_yr && dy == last_dy) {
mjd = last_mjd;
return(mjd);
//return(mjd);
}
m = mn;
y = (yr < 0) ? yr + 1 : yr;
if (mn < 3) {
m += 12;
y -= 1;
}
if (yr < 1582 || (yr == 1582 && (mn < 10 || (mn == 10 && dy < 15)))) {
b = 0;
} else {
@ -125,30 +129,29 @@ double cal_mjd (int mn, double dy, int yr) {
a = y/100;
b = 2 - a + a/4;
}
if (y < 0) {
c = (long)((365.25*y) - 0.75) - 694025L;
} else {
c = (long)(365.25*y) - 694025L;
}
d = (int)(30.6001*(m+1));
mjd = b + c + d + dy - 0.5;
last_mn = mn;
last_dy = dy;
last_yr = yr;
last_mjd = mjd;
return(mjd);
//return(mjd);
}
// given an mjd, return greenwich mean sidereal time, gst
double utc_gst (double mjd) {
double gst;
// given an mjd, calculate greenwich mean sidereal time, gst
void FGTime::utc_gst ()
{
double day = floor(mjd-0.5)+0.5;
double hr = (mjd-day)*24.0;
double T, x;
@ -159,20 +162,18 @@ double utc_gst (double mjd) {
gst = (1.0/SIDRATE)*hr + x;
FG_LOG( FG_EVENT, FG_DEBUG, " gst => " << gst );
return(gst);
}
// given Julian Date and Longitude (decimal degrees West) compute and
// return Local Sidereal Time, in decimal hours.
// given Julian Date and Longitude (decimal degrees West) compute
// Local Sidereal Time, in decimal hours.
//
// Provided courtesy of ecdowney@noao.edu (Elwood Downey)
//
double sidereal_precise (double mjd, double lng) {
double FGTime::sidereal_precise (double lng)
{
double gst;
double lst;
double lstTmp;
/* printf ("Current Lst on JD %13.5f at %8.4f degrees West: ",
mjd + MJD0, lng); */
@ -181,29 +182,131 @@ double sidereal_precise (double mjd, double lng) {
lng *= DEG_TO_RAD;
// compute LST and print
gst = utc_gst (mjd);
lst = gst - RADHR (lng);
lst -= 24.0*floor(lst/24.0);
//gst = utc_gst ();
utc_gst();
lstTmp = gst - RADHR (lng);
lstTmp -= 24.0*floor(lst/24.0);
// printf ("%7.4f\n", lst);
// that's all
return (lst);
return (lstTmp);
}
// Fix up timezone if using ftime()
long int fix_up_timezone( long int timezone_orig ) {
#if !defined( HAVE_GETTIMEOFDAY ) && defined( HAVE_FTIME )
// ftime() needs a little extra help finding the current timezone
struct timeb current;
ftime(&current);
return( current.timezone * 60 );
#else
return( timezone_orig );
#endif
// return a courser but cheaper estimate of sidereal time
double FGTime::sidereal_course(double lng)
{
//struct tm *gmt;
//double lstTmp;
time_t start_gmt, now;
double diff, part, days, hours, lstTmp;
char tbuf[64];
//gmt = t->gmt;
//now = t->cur_time;
now = cur_time;
start_gmt = get_start_gmt(gmt->tm_year);
FG_LOG( FG_EVENT, FG_DEBUG, " COURSE: GMT = " << format_time(gmt, tbuf) );
FG_LOG( FG_EVENT, FG_DEBUG, " March 21 noon (GMT) = " << start_gmt );
diff = (now - start_gmt) / (3600.0 * 24.0);
FG_LOG( FG_EVENT, FG_DEBUG,
" Time since 3/21/" << gmt->tm_year << " GMT = " << diff );
part = fmod(diff, 1.0);
days = diff - part;
hours = gmt->tm_hour + gmt->tm_min/60.0 + gmt->tm_sec/3600.0;
lstTmp = (days - lng)/15.0 + hours - 12;
while ( lstTmp < 0.0 ) {
lstTmp += 24.0;
}
FG_LOG( FG_EVENT, FG_DEBUG,
" days = " << days << " hours = " << hours << " lon = "
<< lng << " lst = " << lstTmp );
return(lstTmp);
}
// Update time variables such as gmt, julian date, and sidereal time
void FGTime::update(FGInterface *f)
{
double gst_precise, gst_course;
FG_LOG( FG_EVENT, FG_DEBUG, "Updating time" );
// get current Unix calendar time (in seconds)
warp += warp_delta;
cur_time = time(NULL) + warp;
FG_LOG( FG_EVENT, FG_DEBUG,
" Current Unix calendar time = " << cur_time
<< " warp = " << warp << " delta = " << warp_delta );
if ( warp_delta ) {
// time is changing so force an update
local_update_sky_and_lighting_params();
}
// get GMT break down for current time
gmt = gmtime(&cur_time);
FG_LOG( FG_EVENT, FG_DEBUG,
" Current GMT = " << gmt->tm_mon+1 << "/"
<< gmt->tm_mday << "/" << gmt->tm_year << " "
<< gmt->tm_hour << ":" << gmt->tm_min << ":"
<< gmt->tm_sec );
// calculate modified Julian date
// t->mjd = cal_mjd ((int)(t->gmt->tm_mon+1), (double)t->gmt->tm_mday,
// (int)(t->gmt->tm_year + 1900));
cal_mjd ((int)(gmt->tm_mon+1), (double)gmt->tm_mday,
(int)(gmt->tm_year + 1900));
// add in partial day
mjd += (gmt->tm_hour / 24.0) + (gmt->tm_min / (24.0 * 60.0)) +
(gmt->tm_sec / (24.0 * 60.0 * 60.0));
// convert "back" to Julian date + partial day (as a fraction of one)
jd = mjd + MJD0;
FG_LOG( FG_EVENT, FG_DEBUG, " Current Julian Date = " << jd );
// printf(" Current Longitude = %.3f\n", FG_Longitude * RAD_TO_DEG);
// Calculate local side real time
if ( gst_diff < -100.0 ) {
// first time through do the expensive calculation & cheap
// calculation to get the difference.
FG_LOG( FG_EVENT, FG_INFO, " First time, doing precise gst" );
gst_precise = gst = sidereal_precise(0.00);
gst_course = sidereal_course(0.00);
gst_diff = gst_precise - gst_course;
lst = sidereal_course(-(f->get_Longitude() * RAD_TO_DEG)) + gst_diff;
} else {
// course + difference should drift off very slowly
gst = sidereal_course( 0.00 ) + gst_diff;
lst = sidereal_course( -(f->get_Longitude() * RAD_TO_DEG)) + gst_diff;
}
FG_LOG( FG_EVENT, FG_DEBUG,
" Current lon=0.00 Sidereal Time = " << gst );
FG_LOG( FG_EVENT, FG_DEBUG,
" Current LOCAL Sidereal Time = " << lst << " ("
<< sidereal_precise(-(f->get_Longitude() * RAD_TO_DEG))
<< ") (diff = " << gst_diff << ")" );
}
/******************************************************************
* The following are some functions that were included as FGTime
* members, although they currenty don't make used of any of the
* class's variables. Maybe this'll change in the future
*****************************************************************/
// Return time_t for Sat Mar 21 12:00:00 GMT
//
// I believe the mktime() has a SYSV vs. BSD behavior difference.
@ -218,7 +321,7 @@ long int fix_up_timezone( long int timezone_orig ) {
// If you are having problems with incorrectly positioned astronomical
// bodies, this is a really good place to start looking.
time_t get_start_gmt(int year) {
time_t FGTime::get_start_gmt(int year) {
struct tm mt;
// For now we assume that if daylight is not defined in
@ -284,8 +387,21 @@ time_t get_start_gmt(int year) {
# endif // ! defined ( MK_TIME_IS_GMT )
}
static char*
format_time( const struct tm* p, char* buf )
// Fix up timezone if using ftime()
long int FGTime::fix_up_timezone( long int timezone_orig )
{
#if !defined( HAVE_GETTIMEOFDAY ) && defined( HAVE_FTIME )
// ftime() needs a little extra help finding the current timezone
struct timeb current;
ftime(&current);
return( current.timezone * 60 );
#else
return( timezone_orig );
#endif
}
char* FGTime::format_time( const struct tm* p, char* buf )
{
sprintf( buf, "%d/%d/%2d %d:%02d:%02d",
p->tm_mon, p->tm_mday, p->tm_year,
@ -293,106 +409,14 @@ format_time( const struct tm* p, char* buf )
return buf;
}
// return a courser but cheaper estimate of sidereal time
double sidereal_course(fgTIME *t, double lng) {
struct tm *gmt;
time_t start_gmt, now;
double diff, part, days, hours, lst;
char tbuf[64];
gmt = t->gmt;
now = t->cur_time;
start_gmt = get_start_gmt(gmt->tm_year);
FG_LOG( FG_EVENT, FG_DEBUG, " COURSE: GMT = " << format_time(gmt, tbuf) );
FG_LOG( FG_EVENT, FG_DEBUG, " March 21 noon (GMT) = " << start_gmt );
diff = (now - start_gmt) / (3600.0 * 24.0);
FG_LOG( FG_EVENT, FG_DEBUG,
" Time since 3/21/" << gmt->tm_year << " GMT = " << diff );
part = fmod(diff, 1.0);
days = diff - part;
hours = gmt->tm_hour + gmt->tm_min/60.0 + gmt->tm_sec/3600.0;
lst = (days - lng)/15.0 + hours - 12;
while ( lst < 0.0 ) {
lst += 24.0;
}
FG_LOG( FG_EVENT, FG_DEBUG,
" days = " << days << " hours = " << hours << " lon = "
<< lng << " lst = " << lst );
return(lst);
}
// Update time variables such as gmt, julian date, and sidereal time
void fgTimeUpdate(FGInterface *f, fgTIME *t) {
double gst_precise, gst_course;
FG_LOG( FG_EVENT, FG_DEBUG, "Updating time" );
// get current Unix calendar time (in seconds)
t->warp += t->warp_delta;
t->cur_time = time(NULL) + t->warp;
FG_LOG( FG_EVENT, FG_DEBUG,
" Current Unix calendar time = " << t->cur_time
<< " warp = " << t->warp << " delta = " << t->warp_delta );
if ( t->warp_delta ) {
// time is changing so force an update
local_update_sky_and_lighting_params();
}
// get GMT break down for current time
t->gmt = gmtime(&t->cur_time);
FG_LOG( FG_EVENT, FG_DEBUG,
" Current GMT = " << t->gmt->tm_mon+1 << "/"
<< t->gmt->tm_mday << "/" << t->gmt->tm_year << " "
<< t->gmt->tm_hour << ":" << t->gmt->tm_min << ":"
<< t->gmt->tm_sec );
// calculate modified Julian date
t->mjd = cal_mjd ((int)(t->gmt->tm_mon+1), (double)t->gmt->tm_mday,
(int)(t->gmt->tm_year + 1900));
// add in partial day
t->mjd += (t->gmt->tm_hour / 24.0) + (t->gmt->tm_min / (24.0 * 60.0)) +
(t->gmt->tm_sec / (24.0 * 60.0 * 60.0));
// convert "back" to Julian date + partial day (as a fraction of one)
t->jd = t->mjd + MJD0;
FG_LOG( FG_EVENT, FG_DEBUG, " Current Julian Date = " << t->jd );
// printf(" Current Longitude = %.3f\n", FG_Longitude * RAD_TO_DEG);
// Calculate local side real time
if ( t->gst_diff < -100.0 ) {
// first time through do the expensive calculation & cheap
// calculation to get the difference.
FG_LOG( FG_EVENT, FG_INFO, " First time, doing precise gst" );
t->gst = gst_precise = sidereal_precise(t->mjd, 0.00);
gst_course = sidereal_course(t, 0.00);
t->gst_diff = gst_precise - gst_course;
t->lst =
sidereal_course(t, -(f->get_Longitude() * RAD_TO_DEG)) + t->gst_diff;
} else {
// course + difference should drift off very slowly
t->gst = sidereal_course(t, 0.00) + t->gst_diff;
t->lst = sidereal_course(t, -(f->get_Longitude() * RAD_TO_DEG)) +
t->gst_diff;
}
FG_LOG( FG_EVENT, FG_DEBUG,
" Current lon=0.00 Sidereal Time = " << t->gst );
FG_LOG( FG_EVENT, FG_DEBUG,
" Current LOCAL Sidereal Time = " << t->lst << " ("
<< sidereal_precise(t->mjd, -(f->get_Longitude() * RAD_TO_DEG))
<< ") (diff = " << t->gst_diff << ")" );
// Force an update of the sky and lighting parameters
void FGTime::local_update_sky_and_lighting_params( void ) {
// fgSunInit();
SolarSystem::theSolarSystem->rebuild();
cur_light_params.Update();
fgSkyColorsInit();
}
FGTime* FGTime::cur_time_params = 0;

View file

@ -1,4 +1,3 @@
//
// fg_time.hxx -- data structures and routines for managing time related stuff.
//
// Written by Curtis Olson, started August 1997.
@ -52,8 +51,10 @@
// Define a structure containing global time parameters
typedef struct {
// the date/time in various forms
class FGTime {
private:
// Unix "calendar" time in seconds
time_t cur_time;
@ -66,6 +67,9 @@ typedef struct {
// modified Julian date
double mjd;
double last_mjd, last_dy;
int last_mn, last_yr;
// side real time at prime meridian
double gst;
@ -73,8 +77,8 @@ typedef struct {
double lst;
// the difference between the precise sidereal time algorithm
// result and the course result.
// course + diff has good accuracy for the short term
// result and the course result. course + diff has good accuracy
// for the short term
double gst_diff;
// An offset in seconds from the true time. Allows us to adjust
@ -83,23 +87,47 @@ typedef struct {
// How much to change the value of warp each iteration. Allows us
// to make time progress faster than normal.
long int warp_delta;
long int warp_delta;
// Paused (0 = no, 1 = yes)
int pause;
} fgTIME;
// Paused?
bool pause;
void local_update_sky_and_lighting_params( void );
extern fgTIME cur_time_params;
public:
FGTime();
~FGTime();
// Update time variables such as gmt, julian date, and sidereal time
void fgTimeInit(fgTIME *t);
inline double getMjd() const { return mjd; };
inline double getLst() const { return lst; };
inline double getGst() const { return gst; };
inline time_t get_cur_time() const { return cur_time; };
inline struct tm* getGmt()const { return gmt; };
inline bool getPause() const { return pause; };
void adjust_warp(int val) { warp += val; };
void adjust_warp_delta(int val) { warp_delta += val; };
void togglePauseMode() { pause = !pause; };
// Initialize the time dependent variables
void init();
// Update the time dependent variables
void fgTimeUpdate(FGInterface *f, fgTIME *t);
// Update the time dependent variables
void update(FGInterface *f);
void cal_mjd (int mn, double dy, int yr);
void utc_gst();
double sidereal_precise (double lng);
double sidereal_course(double lng);
static FGTime *cur_time_params;
// Some other stuff which were changed to FGTime members on
// questionable grounds -:)
time_t get_start_gmt(int year);
char* format_time( const struct tm* p, char* buf );
long int fix_up_timezone( long int timezone_orig );
};
#endif // _FG_TIME_HXX

View file

@ -96,7 +96,7 @@ void fgLIGHT::Init( void ) {
// update lighting parameters based on current sun position
void fgLIGHT::Update( void ) {
FGInterface *f;
fgTIME *t;
FGTime *t;
// if the 4th field is 0.0, this specifies a direction ...
GLfloat white[4] = { 1.0, 1.0, 1.0, 1.0 };
// base sky color
@ -106,7 +106,7 @@ void fgLIGHT::Update( void ) {
double deg, ambient, diffuse, sky_brightness;
f = current_aircraft.fdm_state;
t = &cur_time_params;
t = FGTime::cur_time_params;
FG_LOG( FG_EVENT, FG_INFO, "Updating light parameters." );

View file

@ -337,7 +337,7 @@ static void fgMoonPositionGST(double gst, double *lon, double *lat) {
// update the cur_time_params structure with the current moon position
void fgUpdateMoonPos( void ) {
fgLIGHT *l;
fgTIME *t;
FGTime *t;
FGView *v;
MAT3vec nup, nmoon, v0, surface_to_moon;
Point3D p, rel_moonpos;
@ -346,21 +346,21 @@ void fgUpdateMoonPos( void ) {
double ntmp;
l = &cur_light_params;
t = &cur_time_params;
t = FGTime::cur_time_params;
v = &current_view;
FG_LOG( FG_EVENT, FG_INFO, " Updating Moon position" );
// (not sure why there was two)
// fgMoonPosition(t->cur_time, &l->moon_lon, &moon_gd_lat);
fgMoonPositionGST(t->gst, &l->moon_lon, &moon_gd_lat);
fgMoonPositionGST(t->getGst(), &l->moon_lon, &moon_gd_lat);
fgGeodToGeoc(moon_gd_lat, 0.0, &sl_radius, &l->moon_gc_lat);
p = Point3D( l->moon_lon, l->moon_gc_lat, sl_radius );
l->fg_moonpos = fgPolarToCart3d(p);
FG_LOG( FG_EVENT, FG_INFO, " t->cur_time = " << t->cur_time );
FG_LOG( FG_EVENT, FG_INFO, " t->cur_time = " << t->get_cur_time() );
FG_LOG( FG_EVENT, FG_INFO,
" Moon Geodetic lat = " << moon_gd_lat
<< " Geocentric lat = " << l->moon_gc_lat );

View file

@ -242,7 +242,7 @@ static void fgSunPositionGST(double gst, double *lon, double *lat) {
// update the cur_time_params structure with the current sun position
void fgUpdateSunPos( void ) {
fgLIGHT *l;
fgTIME *t;
FGTime *t;
FGView *v;
MAT3vec nup, nsun, v0, surface_to_sun;
Point3D p, rel_sunpos;
@ -251,21 +251,21 @@ void fgUpdateSunPos( void ) {
double ntmp;
l = &cur_light_params;
t = &cur_time_params;
t = FGTime::cur_time_params;
v = &current_view;
FG_LOG( FG_EVENT, FG_INFO, " Updating Sun position" );
// (not sure why there was two)
// fgSunPosition(t->cur_time, &l->sun_lon, &sun_gd_lat);
fgSunPositionGST(t->gst, &l->sun_lon, &sun_gd_lat);
fgSunPositionGST(t->getGst(), &l->sun_lon, &sun_gd_lat);
fgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &l->sun_gc_lat);
p = Point3D( l->sun_lon, l->sun_gc_lat, sl_radius );
l->fg_sunpos = fgPolarToCart3d(p);
FG_LOG( FG_EVENT, FG_INFO, " t->cur_time = " << t->cur_time );
FG_LOG( FG_EVENT, FG_INFO, " t->cur_time = " << t->get_cur_time() );
FG_LOG( FG_EVENT, FG_INFO,
" Sun Geodetic lat = " << sun_gd_lat
<< " Geocentric lat = " << l->sun_gc_lat );