1
0
Fork 0
flightgear/src/FDM/JSBSim/FGInitialCondition.cpp

379 lines
9.8 KiB
C++
Raw Normal View History

1999-08-17 21:20:38 +00:00
/*******************************************************************************
1999-08-17 21:20:38 +00:00
Header: FGInitialCondition.cpp
Author: Tony Peden
Date started: 7/1/99
1999-08-17 21:20:38 +00:00
------------- Copyright (C) 1999 Anthony K. Peden (apeden@earthlink.net) -------------
1999-08-17 21:20:38 +00:00
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
1999-08-17 21:20:38 +00:00
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
1999-08-17 21:20:38 +00:00
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
1999-08-17 21:20:38 +00:00
Further information about the GNU General Public License can also be found on
the world wide web at http://www.gnu.org.
1999-08-17 21:20:38 +00:00
HISTORY
--------------------------------------------------------------------------------
7/1/99 TP Created
1999-08-17 21:20:38 +00:00
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
1999-08-17 21:20:38 +00:00
The purpose of this class is to take a set of initial conditions and provide
a kinematically consistent set of body axis velocity components, euler
angles, and altitude. This class does not attempt to trim the model i.e.
the sim will most likely start in a very dynamic state (unless, of course,
you have chosen your IC's wisely) even after setting it up with this class.
1999-08-17 21:20:38 +00:00
********************************************************************************
INCLUDES
*******************************************************************************/
#include "FGInitialCondition.h"
#include "FGFDMExec.h"
#include "FGState.h"
#include "FGAtmosphere.h"
#include "FGFCS.h"
#include "FGAircraft.h"
#include "FGTranslation.h"
#include "FGRotation.h"
#include "FGPosition.h"
#include "FGAuxiliary.h"
#include "FGOutput.h"
#include "FGDefs.h"
FGInitialCondition::FGInitialCondition(FGFDMExec *FDMExec) {
vt=vc=ve=0;
mach=0;
alpha=beta=gamma=0;
theta=phi=psi=0;
altitude=hdot=0;
latitude=longitude=0;
u=v=w=0;
lastSpeedSet=setvt;
2000-05-27 05:48:14 +00:00
if(FDMExec != NULL ) {
2000-05-02 18:25:30 +00:00
fdmex=FDMExec;
fdmex->GetPosition()->Seth(altitude);
fdmex->GetAtmosphere()->Run();
} else {
2000-05-27 05:48:14 +00:00
cout << "FGInitialCondition: This class requires a pointer to an valid FGFDMExec object" << endl;
}
2000-05-02 18:25:30 +00:00
1999-08-17 21:20:38 +00:00
}
FGInitialCondition::~FGInitialCondition(void) {}
1999-08-17 21:20:38 +00:00
void FGInitialCondition::SetVcalibratedKtsIC(float tt) {
1999-08-17 21:20:38 +00:00
if(getMachFromVcas(&mach,tt*KTSTOFPS)) {
//cout << "Mach: " << mach << endl;
lastSpeedSet=setvc;
vc=tt*KTSTOFPS;
2000-05-02 18:25:30 +00:00
vt=mach*fdmex->GetAtmosphere()->GetSoundSpeed();
ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio());
2000-05-02 18:25:30 +00:00
//cout << "Vt: " << vt*FPSTOKTS << " Vc: " << vc*FPSTOKTS << endl;
}
else {
cout << "Failed to get Mach number for given Vc and altitude, Vc unchanged." << endl;
cout << "Please mail the set of initial conditions used to apeden@earthlink.net" << endl;
}
2000-05-02 18:25:30 +00:00
}
2000-04-24 23:49:06 +00:00
void FGInitialCondition::SetVequivalentKtsIC(float tt) {
ve=tt*KTSTOFPS;
lastSpeedSet=setve;
vt=ve*1/sqrt(fdmex->GetAtmosphere()->GetDensityRatio());
mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed();
vc=calcVcas(mach);
1999-08-17 21:20:38 +00:00
}
void FGInitialCondition::SetVtrueKtsIC(float tt) {
vt=tt*KTSTOFPS;
lastSpeedSet=setvt;
mach=vt/fdmex->GetAtmosphere()->GetSoundSpeed();
vc=calcVcas(mach);
ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio());
1999-08-17 21:20:38 +00:00
}
void FGInitialCondition::SetMachIC(float tt) {
mach=tt;
lastSpeedSet=setmach;
vt=mach*fdmex->GetAtmosphere()->GetSoundSpeed();
vc=calcVcas(mach);
ve=vt*sqrt(fdmex->GetAtmosphere()->GetDensityRatio());
//cout << "Vt: " << vt*FPSTOKTS << " Vc: " << vc*FPSTOKTS << endl;
1999-08-17 21:20:38 +00:00
}
void FGInitialCondition::SetClimbRateFpmIC(float tt) {
1999-08-17 21:20:38 +00:00
2000-05-27 05:48:14 +00:00
if(vt > 0.1) {
hdot=tt/60;
gamma=asin(hdot/vt);
}
1999-08-17 21:20:38 +00:00
}
2000-10-02 23:07:30 +00:00
void FGInitialCondition::SetFlightPathAngleRadIC(float tt) {
gamma=tt;
getTheta();
hdot=vt*sin(tt);
}
void FGInitialCondition::SetUBodyFpsIC(float tt) {
u=tt;
vt=sqrt(u*u+v*v+w*w);
lastSpeedSet=setvt;
1999-08-17 21:20:38 +00:00
}
2000-10-02 23:07:30 +00:00
void FGInitialCondition::SetVBodyFpsIC(float tt) {
v=tt;
vt=sqrt(u*u+v*v+w*w);
lastSpeedSet=setvt;
1999-08-17 21:20:38 +00:00
}
void FGInitialCondition::SetWBodyFpsIC(float tt) {
w=tt;
vt=sqrt(u*u+v*v+w*w);
lastSpeedSet=setvt;
1999-08-17 21:20:38 +00:00
}
void FGInitialCondition::SetAltitudeFtIC(float tt) {
altitude=tt;
fdmex->GetPosition()->Seth(altitude);
fdmex->GetAtmosphere()->Run();
2000-05-27 05:48:14 +00:00
//lets try to make sure the user gets what they intended
2000-05-27 05:48:14 +00:00
switch(lastSpeedSet) {
2000-05-27 05:48:14 +00:00
case setvt:
SetVtrueKtsIC(vt*FPSTOKTS);
break;
2000-05-27 05:48:14 +00:00
case setvc:
SetVcalibratedKtsIC(vc*FPSTOKTS);
break;
2000-05-27 05:48:14 +00:00
case setve:
SetVequivalentKtsIC(ve*FPSTOKTS);
break;
2000-05-27 05:48:14 +00:00
case setmach:
SetMachIC(mach);
break;
}
1999-08-17 21:20:38 +00:00
}
2000-10-02 23:07:30 +00:00
void FGInitialCondition::SetAltitudeAGLFtIC(float tt) {
fdmex->GetPosition()->SetDistanceAGL(tt);
altitude=fdmex->GetPosition()->Geth();
SetAltitudeFtIC(altitude);
}
bool FGInitialCondition::getMachFromVcas(float *Mach,float vcas) {
bool result=false;
float guess=1.5;
xlo=xhi=0;
xmin=0;xmax=50;
sfunc=&FGInitialCondition::calcVcas;
if(findInterval(vcas,guess)) {
if(solve(&mach,vcas))
result=true;
}
return result;
}
bool FGInitialCondition::getAlpha(void) {
bool result=false;
float guess=theta-gamma;
xlo=xhi=0;
xmin=fdmex->GetAircraft()->GetAlphaCLMin();
xmax=fdmex->GetAircraft()->GetAlphaCLMax();
sfunc=&FGInitialCondition::GammaEqOfAlpha;
if(findInterval(0,guess)){
if(solve(&alpha,0)){
result=true;
}
}
return result;
}
bool FGInitialCondition::getTheta(void) {
bool result=false;
float guess=alpha+gamma;
xlo=xhi=0;
xmin=-89;xmax=89;
sfunc=&FGInitialCondition::GammaEqOfTheta;
if(findInterval(0,guess)){
if(solve(&theta,0)){
result=true;
}
}
return result;
}
float FGInitialCondition::GammaEqOfTheta(float Theta) {
float a,b,c;
a=cos(alpha)*cos(beta)*sin(Theta);
b=sin(beta)*sin(phi);
c=sin(alpha)*cos(beta)*cos(phi);
return sin(gamma)-a+(b+c)*cos(Theta);
}
float FGInitialCondition::GammaEqOfAlpha(float Alpha) {
float a,b,c;
a=cos(Alpha)*cos(beta)*sin(theta);
b=sin(beta)*sin(phi);
c=sin(Alpha)*cos(beta)*cos(phi);
return sin(gamma)-a+(b+c)*cos(theta);
}
2000-05-02 18:25:30 +00:00
float FGInitialCondition::calcVcas(float Mach) {
float p=fdmex->GetAtmosphere()->GetPressure();
float psl=fdmex->GetAtmosphere()->GetPressureSL();
float rhosl=fdmex->GetAtmosphere()->GetDensitySL();
float pt,A,B,D,vcas;
2000-10-02 23:07:30 +00:00
if(Mach < 0) Mach=0;
if(Mach < 1) //calculate total pressure assuming isentropic flow
pt=p*pow((1 + 0.2*Mach*Mach),3.5);
else {
// shock in front of pitot tube, we'll assume its normal and use
// the Rayleigh Pitot Tube Formula, i.e. the ratio of total
// pressure behind the shock to the static pressure in front
//the normal shock assumption should not be a bad one -- most supersonic
//aircraft place the pitot probe out front so that it is the forward
//most point on the aircraft. The real shock would, of course, take
//on something like the shape of a rounded-off cone but, here again,
//the assumption should be good since the opening of the pitot probe
//is very small and, therefore, the effects of the shock curvature
//should be small as well. AFAIK, this approach is fairly well accepted
//within the aerospace community
B = 5.76*Mach*Mach/(5.6*Mach*Mach - 0.8);
// The denominator above is zero for Mach ~ 0.38, for which
// we'll never be here, so we're safe
D = (2.8*Mach*Mach-0.4)*0.4167;
pt = p*pow(B,3.5)*D;
}
A = pow(((pt-p)/psl+1),0.28571);
vcas = sqrt(7*psl/rhosl*(A-1));
2000-05-27 05:48:14 +00:00
//cout << "calcVcas: vcas= " << vcas*FPSTOKTS << " mach= " << Mach << " pressure: " << pt << endl;
return vcas;
2000-05-02 18:25:30 +00:00
}
2000-10-02 23:07:30 +00:00
bool FGInitialCondition::findInterval(float x,float guess) {
//void find_interval(inter_params &ip,eqfunc f,float y,float constant, int &flag){
int i=0;
bool found=false;
float flo,fhi,fguess;
2000-10-02 23:07:30 +00:00
float lo,hi,step;
step=0.1;
2000-10-02 23:07:30 +00:00
fguess=(this->*sfunc)(guess)-x;
lo=hi=guess;
do {
step=2*step;
lo-=step;
hi+=step;
2000-10-02 23:07:30 +00:00
if(lo < xmin) lo=xmin;
if(hi > xmax) hi=xmax;
i++;
2000-10-02 23:07:30 +00:00
flo=(this->*sfunc)(lo)-x;
fhi=(this->*sfunc)(hi)-x;
if(flo*fhi <=0) { //found interval with root
found=true;
if(flo*fguess <= 0) { //narrow interval down a bit
hi=lo+step; //to pass solver interval that is as
//small as possible
}
else if(fhi*fguess <= 0) {
lo=hi-step;
}
2000-05-02 18:25:30 +00:00
}
2000-10-02 23:07:30 +00:00
//cout << "findInterval: i=" << i << " Lo= " << lo << " Hi= " << hi << endl;
}
while((found == 0) && (i <= 100));
2000-10-02 23:07:30 +00:00
xlo=lo;
xhi=hi;
return found;
2000-05-02 18:25:30 +00:00
}
2000-10-02 23:07:30 +00:00
bool FGInitialCondition::solve(float *y,float x) {
float x1,x2,x3,f1,f2,f3,d,d0;
2000-10-02 23:07:30 +00:00
float eps=1E-5;
float const relax =0.9;
int i;
bool success=false;
2000-05-27 05:48:14 +00:00
2000-10-02 23:07:30 +00:00
//initializations
d=1;
2000-10-02 23:07:30 +00:00
x1=xlo;x3=xhi;
f1=(this->*sfunc)(x1)-x;
f3=(this->*sfunc)(x3)-x;
d0=fabs(x3-x1);
2000-10-02 23:07:30 +00:00
//iterations
i=0;
while ((fabs(d) > eps) && (i < 100)) {
d=(x3-x1)/d0;
x2=x1-d*d0*f1/(f3-f1);
2000-05-27 05:48:14 +00:00
2000-10-02 23:07:30 +00:00
f2=(this->*sfunc)(x2)-x;
//cout << "solve x1,x2,x3: " << x1 << "," << x2 << "," << x3 << endl;
//cout << " " << f1 << "," << f2 << "," << f3 << endl;
if(fabs(f2) <= 0.001) {
x1=x3=x2;
} else if(f1*f2 <= 0.0) {
x3=x2;
f3=f2;
f1=relax*f1;
} else if(f2*f3 <= 0) {
x1=x2;
f1=f2;
f3=relax*f3;
}
//cout << i << endl;
i++;
}//end while
if(i < 100) {
success=true;
2000-10-02 23:07:30 +00:00
*y=x2;
2000-05-02 18:25:30 +00:00
}
//cout << "Success= " << success << " Vcas: " << vcas*FPSTOKTS << " Mach: " << x2 << endl;
return success;
2000-05-02 18:25:30 +00:00
}