1
0
Fork 0
flightgear/Simulator/Main/views.hxx

255 lines
8 KiB
C++
Raw Normal View History

// views.hxx -- data structures and routines for managing and view parameters.
//
// Written by Curtis Olson, started August 1997.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
1997-08-27 21:31:17 +00:00
#ifndef _VIEWS_HXX
#define _VIEWS_HXX
1997-08-27 21:31:17 +00:00
#ifndef __cplusplus
# error This library requires C++
1998-04-21 17:02:27 +00:00
#endif
#include <FDM/flight.hxx>
#include <Math/mat3.h>
1998-10-16 00:51:46 +00:00
#include <Math/point3d.hxx>
#include <Time/fg_time.hxx>
#include <Time/light.hxx>
1997-08-27 21:31:17 +00:00
1998-05-27 02:24:05 +00:00
#include "options.hxx"
1998-09-08 15:04:33 +00:00
// used in views.cxx and tilemgr.cxx
#define USE_FAST_FOV_CLIP
1997-08-27 21:31:17 +00:00
// Define a structure containing view information
class FGView {
public:
// the current offset from forward for viewing
double view_offset;
// the goal view offset for viewing (used for smooth view changes)
double goal_view_offset;
1998-05-27 02:24:05 +00:00
// flag forcing update of fov related stuff
1998-09-08 15:04:33 +00:00
bool update_fov;
1998-05-27 02:24:05 +00:00
// fov of view is specified in the y direction, win_ratio is used to
// calculate the fov in the X direction = width/height
double win_ratio;
// width & height of window
int winWidth, winHeight;
// sin and cos of (fov / 2) in Y axis
double sin_fov_y, cos_fov_y;
double sinlon, coslon;
// slope of view frustum edge in eye space Y axis
double slope_y;
// sin and cos of (fov / 2) in X axis
double sin_fov_x, cos_fov_x;
// slope of view frustum edge in eye space X axis
double slope_x;
1998-09-08 15:04:33 +00:00
#if defined( USE_FAST_FOV_CLIP )
double fov_x_clip, fov_y_clip;
#endif // USE_FAST_FOV_CLIP
// View frustum cull ratio (% of tiles culled ... used for
// reporting purposes)
double vfc_ratio;
// Number of triangles rendered;
int tris_rendered;
int tris_culled;
// absolute view position
1998-10-16 00:51:46 +00:00
Point3D abs_view_pos;
// view position translated to scenery.center
1998-10-16 00:51:46 +00:00
Point3D view_pos;
// cartesion coordinates of current lon/lat if at sea level
// translated to scenery.center*/
1998-10-16 00:51:46 +00:00
Point3D cur_zero_elev;
// vector in cartesian coordinates from current position to the
// postion on the earth's surface the sun is directly over
MAT3vec to_sun;
// surface direction to go to head towards sun
MAT3vec surface_to_sun;
// vector in cartesian coordinates from current position to the
// postion on the earth's surface the moon is directly over
MAT3vec to_moon;
// surface direction to go to head towards moon
MAT3vec surface_to_moon;
// surface vector heading south
MAT3vec surface_south;
// surface vector heading east (used to unambiguously align sky
// with sun)
MAT3vec surface_east;
// local up vector (normal to the plane tangent to the earth's
// surface at the spot we are directly above
MAT3vec local_up;
// up vector for the view (usually point straight up through the
// top of the aircraft
MAT3vec view_up;
// the vector pointing straight out the nose of the aircraft
MAT3vec view_forward;
// Transformation matrix for eye coordinates to aircraft coordinates
MAT3mat AIRCRAFT;
// Transformation matrix for the view direction offset relative to
// the AIRCRAFT matrix
MAT3mat VIEW_OFFSET;
// Transformation matrix for aircraft coordinates to world
// coordinates
MAT3mat WORLD;
// Combined transformation from eye coordinates to world coordinates
MAT3mat EYE_TO_WORLD;
// Inverse of EYE_TO_WORLD which is a transformation from world
// coordinates to eye coordinates
MAT3mat WORLD_TO_EYE;
// Current model view matrix;
GLdouble MODEL_VIEW[16];
public:
// Constructor
FGView( void );
// Destructor
~FGView( void );
// Initialize a view class
void Init( void );
// Basically, this is a modified version of the Mesa gluLookAt()
// function that's been modified slightly so we can capture the
// result (and use it later) otherwise this all gets calculated in
// OpenGL land and we don't have access to the results.
void LookAt( GLdouble eyex, GLdouble eyey, GLdouble eyez,
GLdouble centerx, GLdouble centery, GLdouble centerz,
GLdouble upx, GLdouble upy, GLdouble upz );
// Update the view volume, position, and orientation
void UpdateViewParams( void );
// Flag to request that UpdateFOV() be called next time
// UpdateViewMath() is run.
inline void force_update_fov_math() { update_fov = true; }
// Update the view parameters
void UpdateViewMath( FGInterface *f );
// Update the "World to Eye" transformation matrix
void UpdateWorldToEye( FGInterface *f );
// Update the field of view coefficients
void UpdateFOV( const fgOPTIONS& o );
// accessor functions
inline double get_view_offset() const { return view_offset; }
inline void set_view_offset( double a ) { view_offset = a; }
inline void inc_view_offset( double amt ) { view_offset += amt; }
inline double get_goal_view_offset() const { return goal_view_offset; }
inline void set_goal_view_offset( double a) { goal_view_offset = a; }
inline double get_win_ratio() const { return win_ratio; }
inline void set_win_ratio( double r ) { win_ratio = r; }
inline int get_winWidth() const { return winWidth; }
inline void set_winWidth( int w ) { winWidth = w; }
inline int get_winHeight() const { return winHeight; }
inline void set_winHeight( int h ) { winHeight = h; }
inline double get_slope_y() const { return slope_y; }
inline double get_slope_x() const { return slope_x; }
#if defined( USE_FAST_FOV_CLIP )
inline double get_fov_x_clip() const { return fov_x_clip; }
inline double get_fov_y_clip() const { return fov_y_clip; }
#endif // USE_FAST_FOV_CLIP
inline double get_vfc_ratio() const { return vfc_ratio; }
inline void set_vfc_ratio(double r) { vfc_ratio = r; }
inline int get_tris_rendered() const { return tris_rendered; }
inline void set_tris_rendered( int tris) { tris_rendered = tris; }
inline int get_tris_culled() const { return tris_culled; }
inline void set_tris_culled( int tris) { tris_culled = tris; }
inline Point3D get_abs_view_pos() const { return abs_view_pos; }
inline Point3D get_view_pos() const { return view_pos; }
inline Point3D get_cur_zero_elev() const { return cur_zero_elev; }
inline double *get_to_sun() { return to_sun; }
inline void set_to_sun( double x, double y, double z) {
to_sun[0] = x;
to_sun[1] = y;
to_sun[2] = z;
}
inline double *get_surface_to_sun() { return surface_to_sun; }
inline void set_surface_to_sun( double x, double y, double z) {
surface_to_sun[0] = x;
surface_to_sun[1] = y;
surface_to_sun[2] = z;
}
inline double *get_to_moon() { return to_moon; }
inline void set_to_moon( double x, double y, double z) {
to_moon[0] = x;
to_moon[1] = y;
to_moon[2] = z;
}
inline double *get_surface_to_moon() { return surface_to_moon; }
inline void set_surface_to_moon( double x, double y, double z) {
surface_to_moon[0] = x;
surface_to_moon[1] = y;
surface_to_moon[2] = z;
}
inline double *get_surface_south() { return surface_south; }
inline double *get_surface_east() { return surface_east; }
inline double *get_local_up() { return local_up; }
inline const MAT3mat *get_WORLD_TO_EYE() const { return &WORLD_TO_EYE; }
inline GLdouble *get_MODEL_VIEW() { return MODEL_VIEW; }
};
1997-08-27 21:31:17 +00:00
extern FGView current_view;
1997-08-27 21:31:17 +00:00
#endif // _VIEWS_HXX