1
0
Fork 0
flightgear/src/AIModel/AIManager.cxx

398 lines
12 KiB
C++
Raw Normal View History

// AIManager.cxx Based on David Luff's AIMgr:
// - a global management class for AI objects
//
// Written by David Culp, started October 2003.
// - davidculp2@comcast.net
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
#include <simgear/misc/sg_path.hxx>
#include <Main/fg_props.hxx>
#include <Main/globals.hxx>
#include <list>
#include "AIManager.hxx"
#include "AIAircraft.hxx"
#include "AIShip.hxx"
#include "AIBallistic.hxx"
#include "AIStorm.hxx"
#include "AIThermal.hxx"
SG_USING_STD(list);
FGAIManager::FGAIManager() {
initDone = false;
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
numObjects = 0;
_dt = 0.0;
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
dt_count = 9;
scenario_filename = "";
}
FGAIManager::~FGAIManager() {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
ai_list_itr = ai_list.begin();
while(ai_list_itr != ai_list.end()) {
delete (*ai_list_itr);
++ai_list_itr;
}
2003-11-28 20:05:32 +00:00
ai_list.clear();
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
ids.clear();
}
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
void FGAIManager::init() {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
root = fgGetNode("sim/ai", true);
2004-05-19 14:10:31 +00:00
enabled = root->getNode("enabled", true)->getBoolValue();
if (!enabled)
return;
wind_from_down = fgGetNode("/environment/wind-from-down-fps", true);
scenario_filename = root->getNode("scenario", true)->getStringValue();
if (scenario_filename != "") processScenario( scenario_filename );
initDone = true;
}
void FGAIManager::bind() {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
root = globals->get_props()->getNode("ai/models", true);
root->tie("count", SGRawValuePointer<int>(&numObjects));
}
void FGAIManager::unbind() {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
root->untie("count");
}
void FGAIManager::update(double dt) {
// initialize these for finding nearest thermals
range_nearest = 10000.0;
strength = 0.0;
if (!enabled)
return;
_dt = dt;
2003-11-28 20:05:32 +00:00
ai_list_itr = ai_list.begin();
while(ai_list_itr != ai_list.end()) {
if ((*ai_list_itr)->getDie()) {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
freeID((*ai_list_itr)->getID());
delete (*ai_list_itr);
--numObjects;
if ( ai_list_itr == ai_list.begin() ) {
ai_list.erase(ai_list_itr);
ai_list_itr = ai_list.begin();
continue;
} else {
ai_list.erase(ai_list_itr--);
}
} else {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
fetchUserState();
if ((*ai_list_itr)->isa(FGAIBase::otThermal)) {
processThermal((FGAIThermal*)*ai_list_itr);
} else {
(*ai_list_itr)->update(_dt);
}
2003-11-28 20:05:32 +00:00
}
++ai_list_itr;
2003-11-28 20:05:32 +00:00
}
wind_from_down->setDoubleValue( strength );
}
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
// This function returns the next available ID
int FGAIManager::assignID() {
int maxint = 30000;
int x;
bool used;
for (x=1; x<maxint; x++) {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
used = false;
id_itr = ids.begin();
while( id_itr != ids.end() ) {
if ((*id_itr) == x) used = true;
++id_itr;
}
if (!used) {
ids.push_back(x);
return x;
}
}
return -1; // no available ID's
}
// This function removes an ID from the ID array, making it
// available for assignment to another AI object
void FGAIManager::freeID( int ID ) {
id_itr = ids.begin();
while( id_itr != ids.end() ) {
if (*id_itr == ID) {
ids.erase( id_itr );
return;
}
++id_itr;
}
}
int FGAIManager::createAircraft( string model_class, string path,
double latitude, double longitude, double altitude,
double heading, double speed, double roll ) {
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
FGAIAircraft* ai_plane = new FGAIAircraft(this);
ai_list.push_back(ai_plane);
ai_plane->setID( assignID() );
++numObjects;
if (model_class == "light") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::LIGHT]);
} else if (model_class == "ww2_fighter") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::WW2_FIGHTER]);
} else if (model_class == "jet_transport") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::JET_TRANSPORT]);
} else if (model_class == "jet_fighter") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::JET_FIGHTER]);
} else {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::JET_TRANSPORT]);
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
}
ai_plane->setHeading(heading);
ai_plane->setSpeed(speed);
ai_plane->setPath(path.c_str());
ai_plane->setAltitude(altitude);
ai_plane->setLongitude(longitude);
ai_plane->setLatitude(latitude);
ai_plane->setBank(roll);
ai_plane->init();
ai_plane->bind();
return ai_plane->getID();
}
int FGAIManager::createAircraft( string model_class, string path,
FGAIFlightPlan* flightplan ) {
FGAIAircraft* ai_plane = new FGAIAircraft(this);
ai_list.push_back(ai_plane);
ai_plane->setID( assignID() );
++numObjects;
if (model_class == "light") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::LIGHT]);
} else if (model_class == "ww2_fighter") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::WW2_FIGHTER]);
} else if (model_class == "jet_transport") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::JET_TRANSPORT]);
} else if (model_class == "jet_fighter") {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::JET_FIGHTER]);
} else {
ai_plane->SetPerformance(&FGAIAircraft::settings[FGAIAircraft::JET_TRANSPORT]);
}
ai_plane->setPath(path.c_str());
ai_plane->SetFlightPlan(flightplan);
ai_plane->init();
ai_plane->bind();
return ai_plane->getID();
}
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
int FGAIManager::createShip( string path, double latitude, double longitude,
double altitude, double heading, double speed,
double rudder ) {
FGAIShip* ai_ship = new FGAIShip(this);
ai_list.push_back(ai_ship);
ai_ship->setID( assignID() );
++numObjects;
ai_ship->setHeading(heading);
ai_ship->setSpeed(speed);
ai_ship->setPath(path.c_str());
ai_ship->setAltitude(altitude);
ai_ship->setLongitude(longitude);
ai_ship->setLatitude(latitude);
ai_ship->setBank(rudder);
ai_ship->init();
ai_ship->bind();
return ai_ship->getID();
}
int FGAIManager::createShip( string path, FGAIFlightPlan* flightplan ) {
FGAIShip* ai_ship = new FGAIShip(this);
ai_list.push_back(ai_ship);
ai_ship->setID( assignID() );
++numObjects;
ai_ship->setPath(path.c_str());
ai_ship->setFlightPlan(flightplan);
ai_ship->init();
ai_ship->bind();
return ai_ship->getID();
}
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
int FGAIManager::createBallistic( string path, double latitude, double longitude,
double altitude, double azimuth, double elevation,
double speed ) {
FGAIBallistic* ai_ballistic = new FGAIBallistic(this);
ai_list.push_back(ai_ballistic);
ai_ballistic->setID( assignID() );
++numObjects;
ai_ballistic->setAzimuth(azimuth);
ai_ballistic->setElevation(elevation);
ai_ballistic->setSpeed(speed);
ai_ballistic->setPath(path.c_str());
ai_ballistic->setAltitude(altitude);
ai_ballistic->setLongitude(longitude);
ai_ballistic->setLatitude(latitude);
ai_ballistic->init();
ai_ballistic->bind();
return ai_ballistic->getID();
}
int FGAIManager::createStorm( string path, double latitude, double longitude,
double altitude, double heading, double speed ) {
FGAIStorm* ai_storm = new FGAIStorm(this);
ai_list.push_back(ai_storm);
ai_storm->setID( assignID() );
++numObjects;
ai_storm->setHeading(heading);
ai_storm->setSpeed(speed);
ai_storm->setPath(path.c_str());
ai_storm->setAltitude(altitude);
ai_storm->setLongitude(longitude);
ai_storm->setLatitude(latitude);
ai_storm->init();
ai_storm->bind();
return ai_storm->getID();
}
int FGAIManager::createThermal( double latitude, double longitude,
double strength, double diameter ) {
FGAIThermal* ai_thermal = new FGAIThermal(this);
ai_list.push_back(ai_thermal);
ai_thermal->setID( assignID() );
++numObjects;
ai_thermal->setLongitude(longitude);
ai_thermal->setLatitude(latitude);
ai_thermal->setMaxStrength(strength);
ai_thermal->setDiameter(diameter / 6076.11549);
ai_thermal->init();
ai_thermal->bind();
return ai_thermal->getID();
David Culp: Here's a new batch of AI code which includes a working radar instrument. I put the radar calculations into the existing AIAircraft class. It was easier that way, and it can always be migrated out later if we have to. Every tenth sim cycle the AIManager makes a copy of the current user state information. When the AIAircraft updates it uses this information to calculate the radar numbers. It calculates: 1) bearing from user to target 2) range to target in nautical miles 3) "horizontal offset" to target. This is the angle from the nose to the target, in degrees, from -180 to 180. This will be useful later for a HUD. 4) elevation, in degrees (vertical angle from user's position to target position) 5) vertical offset, in degrees (this is elevation corrected for user's pitch) 6) rdot (range rate in knots, note: not working yet, so I commented it out) and three items used by the radar instrument to place the "blip" 7) y_shift, in nautical miles 8) x_shift, in nautical miles 9) rotation, in degrees The radar instrument uses the above three items, and applies a scale factor to the x-shift and y-shift in order to match the instrument's scale. Changing the display scale can be done entirely in the XML code for the instrument. Right now it's set up only to display a 40 mile scale. The radar is an AWACS view, which is not very realistic, but it is useful and demonstrates the technology. With just a little more work I can get a HUD marker. All I need to do there is make a bank angle adjustment to the current values.
2004-02-27 10:20:17 +00:00
}
void FGAIManager::destroyObject( int ID ) {
ai_list_itr = ai_list.begin();
while(ai_list_itr != ai_list.end()) {
if ((*ai_list_itr)->getID() == ID) {
freeID( ID );
delete (*ai_list_itr);
ai_list.erase(ai_list_itr);
--ai_list_itr;
--numObjects;
return;
}
++ai_list_itr;
}
}
// fetch the user's state every 10 sim cycles
void FGAIManager::fetchUserState( void ) {
++dt_count;
if (dt_count == 10) {
user_latitude = fgGetDouble("/position/latitude-deg");
user_longitude = fgGetDouble("/position/longitude-deg");
user_altitude = fgGetDouble("/position/altitude-ft");
user_heading = fgGetDouble("/orientation/heading-deg");
user_pitch = fgGetDouble("/orientation/pitch-deg");
user_yaw = fgGetDouble("/orientation/side-slip-deg");
user_speed = fgGetDouble("/velocities/uBody-fps") * 0.592484;
dt_count = 0;
}
}
// only keep the results from the nearest thermal
void FGAIManager::processThermal( FGAIThermal* thermal ) {
thermal->update(_dt);
if ( thermal->_getRange() < range_nearest ) {
range_nearest = thermal->_getRange();
strength = thermal->getStrength();
}
}
void FGAIManager::processScenario( string filename ) {
FGAIScenario* s = new FGAIScenario( filename );
FGAIFlightPlan* f;
for (int i=0;i<s->nEntries();i++) {
FGAIScenario::entry* en = s->getNextEntry();
f = 0;
if (en) {
if (en->flightplan != ""){
f = new FGAIFlightPlan( en->flightplan );
}
if (en->aitype == "aircraft"){
if (f){
createAircraft( en->aircraft_class, en->model_path, f );
} else {
createAircraft( en->aircraft_class, en->model_path, en->latitude,
en->longitude, en->altitude, en->heading,
en->speed, en->roll );
}
} else if (en->aitype == "ship"){
if (f){
createShip( en->model_path, f );
} else {
createShip( en->model_path, en->latitude,
en->longitude, en->altitude, en->heading,
en->speed, en->rudder );
}
} else if (en->aitype == "storm"){
createStorm( en->model_path, en->latitude, en->longitude,
en->altitude, en->heading, en->speed );
} else if (en->aitype == "thermal"){
createThermal( en->latitude, en->longitude, en->strength,
en->diameter );
} else if (en->aitype == "ballistic"){
createBallistic( en->model_path, en->latitude, en->longitude,
en->altitude, en->azimuth, en->elevation, en->speed );
}
}
}
delete s;
}
int FGAIManager::getNum( FGAIBase::object_type ot ) {
ai_list_iterator itr = ai_list.begin();
int count = 0;
while(itr != ai_list.end()) {
if ((*itr)->getType() == ot) {
++count;
}
++itr;
}
return count;
}