1
0
Fork 0
flightgear/src/FDM/JSBSim/models/FGLGear.cpp

854 lines
29 KiB
C++
Raw Normal View History

2006-01-12 15:04:22 +00:00
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Module: FGLGear.cpp
Author: Jon S. Berndt
Norman H. Princen
Date started: 11/18/99
Purpose: Encapsulates the landing gear elements
Called by: FGAircraft
------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) -------------
This program is free software; you can redistribute it and/or modify it under
2007-01-15 12:48:54 +00:00
the terms of the GNU Lesser General Public License as published by the Free Software
2006-01-12 15:04:22 +00:00
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
2007-01-15 12:48:54 +00:00
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
2006-01-12 15:04:22 +00:00
details.
2007-01-15 12:48:54 +00:00
You should have received a copy of the GNU Lesser General Public License along with
2006-01-12 15:04:22 +00:00
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
2007-01-15 12:48:54 +00:00
Further information about the GNU Lesser General Public License can also be found on
2006-01-12 15:04:22 +00:00
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
HISTORY
--------------------------------------------------------------------------------
11/18/99 JSB Created
01/30/01 NHP Extended gear model to properly simulate steering and braking
/%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#include "FGLGear.h"
namespace JSBSim {
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
DEFINITIONS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
GLOBAL DATA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
static const char *IdSrc = "$Id$";
static const char *IdHdr = ID_LGEAR;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
FGLGear::FGLGear(Element* el, FGFDMExec* fdmex, int number) : Exec(fdmex),
GearNumber(number)
{
Element *force_table=0;
Element *dampCoeff=0;
Element *dampCoeffRebound=0;
2006-01-12 15:04:22 +00:00
string force_type="";
kSpring = bDamp = bDampRebound = dynamicFCoeff = staticFCoeff = rollingFCoeff = maxSteerAngle = 0;
sSteerType = sBrakeGroup = sSteerType = "";
isRetractable = 0;
eDampType = dtLinear;
eDampTypeRebound = dtLinear;
2006-01-12 15:04:22 +00:00
name = el->GetAttributeValue("name");
sContactType = el->GetAttributeValue("type");
if (sContactType == "BOGEY") {
eContactType = ctBOGEY;
} else if (sContactType == "STRUCTURE") {
eContactType = ctSTRUCTURE;
} else {
eContactType = ctUNKNOWN;
}
2006-01-12 15:04:22 +00:00
if (el->FindElement("spring_coeff"))
kSpring = el->FindElementValueAsNumberConvertTo("spring_coeff", "LBS/FT");
if (el->FindElement("damping_coeff")) {
dampCoeff = el->FindElement("damping_coeff");
if (dampCoeff->GetAttributeValue("type") == "SQUARE") {
eDampType = dtSquare; // default is dtLinear
bDamp = el->FindElementValueAsNumberConvertTo("damping_coeff", "LBS/FT/SEC2");
} else {
bDamp = el->FindElementValueAsNumberConvertTo("damping_coeff", "LBS/FT/SEC");
}
}
2006-01-12 15:04:22 +00:00
if (el->FindElement("damping_coeff_rebound")) {
dampCoeffRebound = el->FindElement("damping_coeff_rebound");
if (dampCoeffRebound->GetAttributeValue("type") == "SQUARE") {
eDampTypeRebound = dtSquare; // default is dtLinear
bDampRebound = el->FindElementValueAsNumberConvertTo("damping_coeff_rebound", "LBS/FT/SEC2");
} else {
bDampRebound = el->FindElementValueAsNumberConvertTo("damping_coeff_rebound", "LBS/FT/SEC");
}
} else {
2006-01-12 15:04:22 +00:00
bDampRebound = bDamp;
eDampTypeRebound = eDampType;
}
2006-01-12 15:04:22 +00:00
if (el->FindElement("dynamic_friction"))
dynamicFCoeff = el->FindElementValueAsNumber("dynamic_friction");
if (el->FindElement("static_friction"))
staticFCoeff = el->FindElementValueAsNumber("static_friction");
if (el->FindElement("rolling_friction"))
rollingFCoeff = el->FindElementValueAsNumber("rolling_friction");
if (el->FindElement("max_steer"))
maxSteerAngle = el->FindElementValueAsNumberConvertTo("max_steer", "DEG");
if (el->FindElement("retractable"))
isRetractable = ((unsigned int)el->FindElementValueAsNumber("retractable"))>0.0?true:false;
2006-01-12 15:04:22 +00:00
ForceY_Table = 0;
force_table = el->FindElement("table");
while (force_table) {
force_type = force_table->GetAttributeValue("type");
if (force_type == "CORNERING_COEFF") {
ForceY_Table = new FGTable(Exec->GetPropertyManager(), force_table);
} else {
cerr << "Undefined force table for " << name << " contact point" << endl;
}
force_table = el->FindNextElement("table");
}
sBrakeGroup = el->FindElementValue("brake_group");
if (maxSteerAngle == 360) sSteerType = "CASTERED";
else if (maxSteerAngle == 0.0) sSteerType = "FIXED";
else sSteerType = "STEERABLE";
Element* element = el->FindElement("location");
if (element) vXYZ = element->FindElementTripletConvertTo("IN");
else {cerr << "No location given for contact " << name << endl; exit(-1);}
if (sBrakeGroup == "LEFT" ) eBrakeGrp = bgLeft;
else if (sBrakeGroup == "RIGHT" ) eBrakeGrp = bgRight;
else if (sBrakeGroup == "CENTER") eBrakeGrp = bgCenter;
else if (sBrakeGroup == "NOSE" ) eBrakeGrp = bgNose;
else if (sBrakeGroup == "TAIL" ) eBrakeGrp = bgTail;
else if (sBrakeGroup == "NONE" ) eBrakeGrp = bgNone;
else if (sBrakeGroup.empty() ) {eBrakeGrp = bgNone;
sBrakeGroup = "NONE (defaulted)";}
else {
cerr << "Improper braking group specification in config file: "
<< sBrakeGroup << " is undefined." << endl;
}
if (sSteerType == "STEERABLE") eSteerType = stSteer;
else if (sSteerType == "FIXED" ) eSteerType = stFixed;
else if (sSteerType == "CASTERED" ) eSteerType = stCaster;
else if (sSteerType.empty() ) {eSteerType = stFixed;
sSteerType = "FIXED (defaulted)";}
else {
cerr << "Improper steering type specification in config file: "
<< sSteerType << " is undefined." << endl;
}
2007-01-15 12:48:54 +00:00
RFRV = 0.7; // Rolling force relaxation velocity, default value
SFRV = 0.7; // Side force relaxation velocity, default value
Element* relax_vel = el->FindElement("relaxation_velocity");
if (relax_vel) {
if (relax_vel->FindElement("rolling")) {
RFRV = relax_vel->FindElementValueAsNumberConvertTo("rolling", "FT/SEC");
}
if (relax_vel->FindElement("side")) {
SFRV = relax_vel->FindElementValueAsNumberConvertTo("side", "FT/SEC");
}
}
State = Exec->GetState();
LongForceLagFilterCoeff = 1/State->Getdt(); // default longitudinal force filter coefficient
LatForceLagFilterCoeff = 1/State->Getdt(); // default lateral force filter coefficient
Element* force_lag_filter_elem = el->FindElement("force_lag_filter");
if (force_lag_filter_elem) {
if (force_lag_filter_elem->FindElement("rolling")) {
LongForceLagFilterCoeff = force_lag_filter_elem->FindElementValueAsNumber("rolling");
}
if (force_lag_filter_elem->FindElement("side")) {
LatForceLagFilterCoeff = force_lag_filter_elem->FindElementValueAsNumber("side");
}
}
WheelSlipLagFilterCoeff = 1/State->Getdt();
Element *wheel_slip_angle_lag_elem = el->FindElement("wheel_slip_filter");
if (wheel_slip_angle_lag_elem) {
WheelSlipLagFilterCoeff = wheel_slip_angle_lag_elem->GetDataAsNumber();
}
2006-01-12 15:04:22 +00:00
GearUp = false;
GearDown = true;
GearPos = 1.0;
useFCSGearPos = false;
2006-01-12 15:04:22 +00:00
Servicable = true;
// Add some AI here to determine if gear is located properly according to its
// brake group type ??
State = Exec->GetState();
Aircraft = Exec->GetAircraft();
Propagate = Exec->GetPropagate();
Auxiliary = Exec->GetAuxiliary();
FCS = Exec->GetFCS();
MassBalance = Exec->GetMassBalance();
2007-01-20 09:28:53 +00:00
WOW = lastWOW = false;
2006-01-12 15:04:22 +00:00
ReportEnable = true;
FirstContact = false;
StartedGroundRun = false;
TakeoffReported = LandingReported = false;
LandingDistanceTraveled = TakeoffDistanceTraveled = TakeoffDistanceTraveled50ft = 0.0;
MaximumStrutForce = MaximumStrutTravel = 0.0;
SideForce = RollingForce = 0.0;
SinkRate = GroundSpeed = 0.0;
vWhlBodyVec = MassBalance->StructuralToBody(vXYZ);
vLocalGear = Propagate->GetTb2l() * vWhlBodyVec;
compressLength = 0.0;
compressSpeed = 0.0;
brakePct = 0.0;
maxCompLen = 0.0;
2007-01-15 12:48:54 +00:00
WheelSlip = 0.0;
2006-01-12 15:04:22 +00:00
TirePressureNorm = 1.0;
SideWhlVel = 0.0;
RollingWhlVel = 0.0;
SinWheel = 0.0;
CosWheel = 0.0;
prevSlipIn = 0.0;
prevSlipOut = 0.0;
2006-01-12 15:04:22 +00:00
Debug(0);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGLGear::FGLGear(const FGLGear& lgear)
{
GearNumber = lgear.GearNumber;
State = lgear.State;
Aircraft = lgear.Aircraft;
Propagate = lgear.Propagate;
Auxiliary = lgear.Auxiliary;
Exec = lgear.Exec;
FCS = lgear.FCS;
MassBalance = lgear.MassBalance;
vXYZ = lgear.vXYZ;
vMoment = lgear.vMoment;
vWhlBodyVec = lgear.vWhlBodyVec;
vLocalGear = lgear.vLocalGear;
WOW = lgear.WOW;
lastWOW = lgear.lastWOW;
ReportEnable = lgear.ReportEnable;
FirstContact = lgear.FirstContact;
StartedGroundRun = lgear.StartedGroundRun;
LandingDistanceTraveled = lgear.LandingDistanceTraveled;
TakeoffDistanceTraveled = lgear.TakeoffDistanceTraveled;
TakeoffDistanceTraveled50ft = lgear.TakeoffDistanceTraveled50ft;
MaximumStrutForce = lgear.MaximumStrutForce;
MaximumStrutTravel = lgear.MaximumStrutTravel;
SideForce = lgear.SideForce;
RollingForce = lgear.RollingForce;
kSpring = lgear.kSpring;
bDamp = lgear.bDamp;
bDampRebound = lgear.bDampRebound;
compressLength = lgear.compressLength;
compressSpeed = lgear.compressSpeed;
staticFCoeff = lgear.staticFCoeff;
dynamicFCoeff = lgear.dynamicFCoeff;
rollingFCoeff = lgear.rollingFCoeff;
brakePct = lgear.brakePct;
maxCompLen = lgear.maxCompLen;
SinkRate = lgear.SinkRate;
GroundSpeed = lgear.GroundSpeed;
LandingReported = lgear.LandingReported;
TakeoffReported = lgear.TakeoffReported;
name = lgear.name;
sSteerType = lgear.sSteerType;
sRetractable = lgear.sRetractable;
sContactType = lgear.sContactType;
eContactType = lgear.eContactType;
2006-01-12 15:04:22 +00:00
sBrakeGroup = lgear.sBrakeGroup;
eSteerType = lgear.eSteerType;
eBrakeGrp = lgear.eBrakeGrp;
maxSteerAngle = lgear.maxSteerAngle;
isRetractable = lgear.isRetractable;
GearUp = lgear.GearUp;
GearDown = lgear.GearDown;
GearPos = lgear.GearPos;
useFCSGearPos = lgear.useFCSGearPos;
2006-01-12 15:04:22 +00:00
WheelSlip = lgear.WheelSlip;
TirePressureNorm = lgear.TirePressureNorm;
Servicable = lgear.Servicable;
ForceY_Table = lgear.ForceY_Table;
CosWheel = lgear.CosWheel;
SinWheel = lgear.SinWheel;
prevOut = lgear.prevOut;
2007-01-15 12:48:54 +00:00
prevIn = lgear.prevIn;
prevSlipIn = lgear.prevSlipIn;
prevSlipOut = lgear.prevSlipOut;
RFRV = lgear.RFRV;
SFRV = lgear.SFRV;
LongForceLagFilterCoeff = lgear.LongForceLagFilterCoeff;
LatForceLagFilterCoeff = lgear.LatForceLagFilterCoeff;
WheelSlipLagFilterCoeff = lgear.WheelSlipLagFilterCoeff;
2006-01-12 15:04:22 +00:00
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGLGear::~FGLGear()
{
Debug(1);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGColumnVector3& FGLGear::Force(void)
{
double t = Exec->GetState()->Getsim_time();
2007-01-15 12:48:54 +00:00
dT = State->Getdt()*Exec->GetGroundReactions()->GetRate();
2006-01-12 15:04:22 +00:00
vForce.InitMatrix();
vMoment.InitMatrix();
if (isRetractable) ComputeRetractionState();
if (!GearDown) return vForce; // return the null vForce column vector
2006-01-12 15:04:22 +00:00
vWhlBodyVec = MassBalance->StructuralToBody(vXYZ); // Get wheel in body frame
vLocalGear = Propagate->GetTb2l() * vWhlBodyVec; // Get local frame wheel location
gearLoc = Propagate->GetLocation().LocalToLocation(vLocalGear);
compressLength = -Exec->GetGroundCallback()->GetAGLevel(t, gearLoc, contact, normal, cvel);
// The compression length is measured in the Z-axis, only, at this time.
if (compressLength > 0.00) {
WOW = true;
// [The next equation should really use the vector to the contact patch of
// the tire including the strut compression and not the original vWhlBodyVec.]
vWhlVelVec = Propagate->GetTb2l() * (Propagate->GetPQR() * vWhlBodyVec);
vWhlVelVec += Propagate->GetVel() - cvel;
compressSpeed = vWhlVelVec(eZ);
InitializeReporting();
ComputeBrakeForceCoefficient();
ComputeSteeringAngle();
ComputeSlipAngle();
ComputeSideForceCoefficient();
ComputeVerticalStrutForce();
// Compute the forces in the wheel ground plane.
double sign = RollingWhlVel>0?1.0:(RollingWhlVel<0?-1.0:0.0);
RollingForce = ((1.0 - TirePressureNorm) * 30 + vLocalForce(eZ) * BrakeFCoeff) * sign;
2006-01-12 15:04:22 +00:00
SideForce = vLocalForce(eZ) * FCoeff;
// Transform these forces back to the local reference frame.
vLocalForce(eX) = RollingForce*CosWheel - SideForce*SinWheel;
vLocalForce(eY) = SideForce*CosWheel + RollingForce*SinWheel;
// Transform the forces back to the body frame and compute the moment.
vForce = Propagate->GetTl2b() * vLocalForce;
2007-01-15 12:48:54 +00:00
// Start experimental section for gear jitter reduction
//
// Lag and attenuate the XY-plane forces dependent on velocity
double ca, cb, denom;
FGColumnVector3 Output;
// This code implements a lag filter, C/(s + C) where
// "C" is the filter coefficient. When "C" is chosen at the
// frame rate (in Hz), the jittering is significantly reduced. This is because
// the jitter is present *at* the execution rate.
// If a coefficient is set to something equal to or less than zero, the filter
// is bypassed.
if (LongForceLagFilterCoeff > 0) {
denom = 2.00 + dT*LongForceLagFilterCoeff;
ca = dT*LongForceLagFilterCoeff / denom;
cb = (2.00 - dT*LongForceLagFilterCoeff) / denom;
Output(eX) = vForce(eX) * ca + prevIn(eX) * ca + prevOut(eX) * cb;
vForce(eX) = Output(eX);
}
if (LatForceLagFilterCoeff > 0) {
denom = 2.00 + dT*LatForceLagFilterCoeff;
ca = dT*LatForceLagFilterCoeff / denom;
cb = (2.00 - dT*LatForceLagFilterCoeff) / denom;
Output(eY) = vForce(eY) * ca + prevIn(eY) * ca + prevOut(eY) * cb;
vForce(eY) = Output(eY);
}
2006-01-12 15:04:22 +00:00
2007-01-15 12:48:54 +00:00
prevIn = vForce;
prevOut = Output;
2006-01-12 15:04:22 +00:00
2007-01-15 12:48:54 +00:00
if ((fabs(RollingWhlVel) <= RFRV) && RFRV > 0) vForce(eX) *= fabs(RollingWhlVel)/RFRV;
if ((fabs(SideWhlVel) <= SFRV) && SFRV > 0) vForce(eY) *= fabs(SideWhlVel)/SFRV;
2006-01-12 15:04:22 +00:00
// End section for attentuating gear jitter
2006-01-12 15:04:22 +00:00
vMoment = vWhlBodyVec * vForce;
} else { // Gear is NOT compressed
WOW = false;
compressLength = 0.0;
// Return to neutral position between 1.0 and 0.8 gear pos.
SteerAngle *= max(GetGearUnitPos()-0.8, 0.0)/0.2;
2006-01-12 15:04:22 +00:00
ResetReporting();
}
ReportTakeoffOrLanding();
// Require both WOW and LastWOW to be true before checking crash conditions
// to allow the WOW flag to be used in terminating a scripted run.
if (WOW && lastWOW) CrashDetect();
lastWOW = WOW;
2006-01-12 15:04:22 +00:00
return vForce;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGLGear::ComputeRetractionState(void)
{
double gearPos = GetGearUnitPos();
if (gearPos < 0.01) {
2006-01-12 15:04:22 +00:00
GearUp = true;
GearDown = false;
} else if (gearPos > 0.99) {
2006-01-12 15:04:22 +00:00
GearDown = true;
GearUp = false;
} else {
GearUp = false;
GearDown = false;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGLGear::ComputeSlipAngle(void)
{
// Transform the wheel velocities from the local axis system to the wheel axis system.
RollingWhlVel = vWhlVelVec(eX)*CosWheel + vWhlVelVec(eY)*SinWheel;
SideWhlVel = vWhlVelVec(eY)*CosWheel - vWhlVelVec(eX)*SinWheel;
// Calculate tire slip angle.
WheelSlip = atan2(SideWhlVel, fabs(RollingWhlVel))*radtodeg;
2007-01-15 12:48:54 +00:00
// Filter the wheel slip angle
2007-01-15 12:48:54 +00:00
double SlipOutput, ca, cb, denom;
if (WheelSlipLagFilterCoeff > 0) {
denom = 2.00 + dT*WheelSlipLagFilterCoeff;
ca = dT*WheelSlipLagFilterCoeff / denom;
cb = (2.00 - dT*WheelSlipLagFilterCoeff) / denom;
SlipOutput = ca * (WheelSlip + prevSlipIn) + cb * prevSlipOut;
prevSlipIn = WheelSlip;
WheelSlip = prevSlipOut = SlipOutput;
}
2006-01-12 15:04:22 +00:00
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Compute the steering angle in any case.
// This will also make sure that animations will look right.
void FGLGear::ComputeSteeringAngle(void)
{
double casterLocalFrameAngleRad = 0.0;
double casterAngle = 0.0;
2006-01-12 15:04:22 +00:00
switch (eSteerType) {
case stSteer:
SteerAngle = degtorad * FCS->GetSteerPosDeg(GearNumber);
break;
case stFixed:
SteerAngle = 0.0;
break;
case stCaster:
// This is not correct for castering gear. Should make steer angle parallel
// to the actual velocity vector of the wheel, given aircraft velocity vector
// and omega.
SteerAngle = 0.0;
casterLocalFrameAngleRad = acos(vWhlVelVec(eX)/vWhlVelVec.Magnitude());
casterAngle = casterLocalFrameAngleRad - Propagate->GetEuler(ePsi);
2006-01-12 15:04:22 +00:00
break;
default:
cerr << "Improper steering type membership detected for this gear." << endl;
break;
}
SinWheel = sin(Propagate->GetEuler(ePsi) + SteerAngle);
CosWheel = cos(Propagate->GetEuler(ePsi) + SteerAngle);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Reset reporting functionality after takeoff
void FGLGear::ResetReporting(void)
{
if (Propagate->GetDistanceAGL() > 200.0) {
FirstContact = false;
StartedGroundRun = false;
LandingReported = false;
TakeoffReported = true;
2006-01-12 15:04:22 +00:00
LandingDistanceTraveled = 0.0;
MaximumStrutForce = MaximumStrutTravel = 0.0;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGLGear::InitializeReporting(void)
{
// If this is the first time the wheel has made contact, remember some values
// for later printout.
if (!FirstContact) {
FirstContact = true;
SinkRate = compressSpeed;
GroundSpeed = Propagate->GetVel().Magnitude();
TakeoffReported = false;
}
// If the takeoff run is starting, initialize.
if ((Propagate->GetVel().Magnitude() > 0.1) &&
(FCS->GetBrake(bgLeft) == 0) &&
(FCS->GetBrake(bgRight) == 0) &&
(FCS->GetThrottlePos(0) > 0.90) && !StartedGroundRun)
2006-01-12 15:04:22 +00:00
{
TakeoffDistanceTraveled = 0;
TakeoffDistanceTraveled50ft = 0;
StartedGroundRun = true;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Takeoff and landing reporting functionality
void FGLGear::ReportTakeoffOrLanding(void)
{
double deltaT = State->Getdt()*Exec->GetGroundReactions()->GetRate();
if (FirstContact)
LandingDistanceTraveled += Auxiliary->GetVground()*deltaT;
2006-01-12 15:04:22 +00:00
if (StartedGroundRun) {
TakeoffDistanceTraveled50ft += Auxiliary->GetVground()*deltaT;
if (WOW) TakeoffDistanceTraveled += Auxiliary->GetVground()*deltaT;
}
if ( ReportEnable
&& Auxiliary->GetVground() <= 0.05
&& !LandingReported
&& Exec->GetGroundReactions()->GetWOW())
{
2006-01-12 15:04:22 +00:00
if (debug_lvl > 0) Report(erLand);
}
if ( ReportEnable
&& !TakeoffReported
&& (Propagate->GetDistanceAGL() - vLocalGear(eZ)) > 50.0
&& !Exec->GetGroundReactions()->GetWOW())
2006-01-12 15:04:22 +00:00
{
if (debug_lvl > 0) Report(erTakeoff);
}
if (lastWOW != WOW) PutMessage("GEAR_CONTACT: " + name, WOW);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Crash detection logic (really out-of-bounds detection)
void FGLGear::CrashDetect(void)
{
2007-01-15 12:48:54 +00:00
if ( (compressLength > 500.0 ||
2006-01-12 15:04:22 +00:00
vForce.Magnitude() > 100000000.0 ||
vMoment.Magnitude() > 5000000000.0 ||
2007-01-15 12:48:54 +00:00
SinkRate > 1.4666*30 ) && !State->IntegrationSuspended())
2006-01-12 15:04:22 +00:00
{
PutMessage("Crash Detected: Simulation FREEZE.");
State->SuspendIntegration();
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// The following needs work regarding friction coefficients and braking and
// steering The BrakeFCoeff formula assumes that an anti-skid system is used.
// It also assumes that we won't be turning and braking at the same time.
// Will fix this later.
// [JSB] The braking force coefficients include normal rolling coefficient +
// a percentage of the static friction coefficient based on braking applied.
void FGLGear::ComputeBrakeForceCoefficient(void)
{
switch (eBrakeGrp) {
case bgLeft:
BrakeFCoeff = ( rollingFCoeff*(1.0 - FCS->GetBrake(bgLeft)) +
staticFCoeff*FCS->GetBrake(bgLeft) );
break;
case bgRight:
BrakeFCoeff = ( rollingFCoeff*(1.0 - FCS->GetBrake(bgRight)) +
staticFCoeff*FCS->GetBrake(bgRight) );
break;
case bgCenter:
BrakeFCoeff = ( rollingFCoeff*(1.0 - FCS->GetBrake(bgCenter)) +
staticFCoeff*FCS->GetBrake(bgCenter) );
break;
case bgNose:
BrakeFCoeff = ( rollingFCoeff*(1.0 - FCS->GetBrake(bgCenter)) +
staticFCoeff*FCS->GetBrake(bgCenter) );
break;
case bgTail:
BrakeFCoeff = ( rollingFCoeff*(1.0 - FCS->GetBrake(bgCenter)) +
staticFCoeff*FCS->GetBrake(bgCenter) );
break;
case bgNone:
BrakeFCoeff = rollingFCoeff;
break;
default:
cerr << "Improper brake group membership detected for this gear." << endl;
break;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Compute the sideforce coefficients using similar assumptions to LaRCSim for now.
// Allow a maximum of 10 degrees tire slip angle before wheel slides. At that point,
// transition from static to dynamic friction. There are more complicated formulations
// of this that avoid the discrete jump (similar to Pacejka). Will fix this later.
void FGLGear::ComputeSideForceCoefficient(void)
{
if (ForceY_Table) {
FCoeff = ForceY_Table->GetValue(WheelSlip);
} else {
if (fabs(WheelSlip) <= 10.0) {
FCoeff = staticFCoeff*WheelSlip/10.0;
} else if (fabs(WheelSlip) <= 40.0) {
FCoeff = (dynamicFCoeff*(fabs(WheelSlip) - 10.0)/10.0
+ staticFCoeff*(40.0 - fabs(WheelSlip))/10.0)*(WheelSlip>=0?1.0:-1.0);
} else {
FCoeff = dynamicFCoeff*(WheelSlip>=0?1.0:-1.0);
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Compute the vertical force on the wheel using square-law damping (per comment
// in paper AIAA-2000-4303 - see header prologue comments). We might consider
// allowing for both square and linear damping force calculation. Also need to
// possibly give a "rebound damping factor" that differs from the compression
// case.
void FGLGear::ComputeVerticalStrutForce(void)
{
double springForce = 0;
double dampForce = 0;
springForce = -compressLength * kSpring;
if (compressSpeed >= 0.0) {
if (eDampType == dtLinear) dampForce = -compressSpeed * bDamp;
else dampForce = -compressSpeed * compressSpeed * bDamp;
2006-01-12 15:04:22 +00:00
} else {
if (eDampTypeRebound == dtLinear)
dampForce = -compressSpeed * bDampRebound;
else
dampForce = compressSpeed * compressSpeed * bDampRebound;
2006-01-12 15:04:22 +00:00
}
vLocalForce(eZ) = min(springForce + dampForce, (double)0.0);
2006-01-12 15:04:22 +00:00
// Remember these values for reporting
MaximumStrutForce = max(MaximumStrutForce, fabs(vLocalForce(eZ)));
MaximumStrutTravel = max(MaximumStrutTravel, fabs(compressLength));
2006-01-12 15:04:22 +00:00
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
double FGLGear::GetGearUnitPos(void)
2006-01-12 15:04:22 +00:00
{
// hack to provide backward compatibility to gear/gear-pos-norm property
if( useFCSGearPos || FCS->GetGearPos() != 1.0 ) {
useFCSGearPos = true;
return FCS->GetGearPos();
}
return GearPos;
2006-01-12 15:04:22 +00:00
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGLGear::bind(void)
2006-01-12 15:04:22 +00:00
{
char property_name[80];
if (eContactType == ctBOGEY) {
snprintf(property_name, 80, "gear/unit[%d]/slip-angle-deg", GearNumber);
Exec->GetPropertyManager()->Tie( property_name, &WheelSlip );
snprintf(property_name, 80, "gear/unit[%d]/WOW", GearNumber);
Exec->GetPropertyManager()->Tie( property_name, &WOW );
snprintf(property_name, 80, "gear/unit[%d]/wheel-speed-fps", GearNumber);
Exec->GetPropertyManager()->Tie( property_name, &RollingWhlVel );
snprintf(property_name, 80, "gear/unit[%d]/z-position", GearNumber);
Exec->GetPropertyManager()->Tie( property_name, (FGLGear*)this,
&FGLGear::GetZPosition, &FGLGear::SetZPosition);
}
if( isRetractable ) {
snprintf(property_name, 80, "gear/unit[%d]/pos-norm", GearNumber);
Exec->GetPropertyManager()->Tie( property_name, &GearPos );
}
2006-01-12 15:04:22 +00:00
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGLGear::Report(ReportType repType)
{
switch(repType) {
case erLand:
cout << endl << "Touchdown report for " << name << endl;
cout << " Sink rate at contact: " << SinkRate << " fps, "
<< SinkRate*0.3048 << " mps" << endl;
cout << " Contact ground speed: " << GroundSpeed*.5925 << " knots, "
<< GroundSpeed*0.3048 << " mps" << endl;
cout << " Maximum contact force: " << MaximumStrutForce << " lbs, "
<< MaximumStrutForce*4.448 << " Newtons" << endl;
cout << " Maximum strut travel: " << MaximumStrutTravel*12.0 << " inches, "
<< MaximumStrutTravel*30.48 << " cm" << endl;
cout << " Distance traveled: " << LandingDistanceTraveled << " ft, "
<< LandingDistanceTraveled*0.3048 << " meters" << endl;
LandingReported = true;
break;
case erTakeoff:
cout << endl << "Takeoff report for " << name << endl;
cout << " Distance traveled: " << TakeoffDistanceTraveled
<< " ft, " << TakeoffDistanceTraveled*0.3048 << " meters" << endl;
cout << " Distance traveled (over 50'): " << TakeoffDistanceTraveled50ft
<< " ft, " << TakeoffDistanceTraveled50ft*0.3048 << " meters" << endl;
TakeoffReported = true;
break;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// The bitmasked value choices are as follows:
// unset: In this case (the default) JSBSim would only print
// out the normally expected messages, essentially echoing
// the config files as they are read. If the environment
// variable is not set, debug_lvl is set to 1 internally
// 0: This requests JSBSim not to output any messages
// whatsoever.
// 1: This value explicity requests the normal JSBSim
// startup messages
// 2: This value asks for a message to be printed out when
// a class is instantiated
// 4: When this value is set, a message is displayed when a
// FGModel object executes its Run() method
// 8: When this value is set, various runtime state variables
// are printed out periodically
// 16: When set various parameters are sanity checked and
// a message is printed out when they go out of bounds
void FGLGear::Debug(int from)
{
if (debug_lvl <= 0) return;
if (debug_lvl & 1) { // Standard console startup message output
if (from == 0) { // Constructor - loading and initialization
cout << " " << sContactType << " " << name << endl;
cout << " Location: " << vXYZ << endl;
cout << " Spring Constant: " << kSpring << endl;
if (eDampType == dtLinear)
cout << " Damping Constant: " << bDamp << " (linear)" << endl;
else
cout << " Damping Constant: " << bDamp << " (square law)" << endl;
if (eDampTypeRebound == dtLinear)
cout << " Rebound Damping Constant: " << bDampRebound << " (linear)" << endl;
else
cout << " Rebound Damping Constant: " << bDampRebound << " (square law)" << endl;
2006-01-12 15:04:22 +00:00
cout << " Dynamic Friction: " << dynamicFCoeff << endl;
cout << " Static Friction: " << staticFCoeff << endl;
if (eContactType == ctBOGEY) {
2006-01-12 15:04:22 +00:00
cout << " Rolling Friction: " << rollingFCoeff << endl;
cout << " Steering Type: " << sSteerType << endl;
cout << " Grouping: " << sBrakeGroup << endl;
cout << " Max Steer Angle: " << maxSteerAngle << endl;
cout << " Retractable: " << isRetractable << endl;
2007-01-15 12:48:54 +00:00
cout << " Relaxation Velocities:" << endl;
cout << " Rolling: " << RFRV << endl;
cout << " Side: " << SFRV << endl;
2006-01-12 15:04:22 +00:00
}
}
}
if (debug_lvl & 2 ) { // Instantiation/Destruction notification
if (from == 0) cout << "Instantiated: FGLGear" << endl;
if (from == 1) cout << "Destroyed: FGLGear" << endl;
}
if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
}
if (debug_lvl & 8 ) { // Runtime state variables
}
if (debug_lvl & 16) { // Sanity checking
}
if (debug_lvl & 64) {
if (from == 0) { // Constructor
cout << IdSrc << endl;
cout << IdHdr << endl;
}
}
}
} // namespace JSBSim