1
0
Fork 0
fgdata/Shaders/ws30-water.frag
Stuart Buchanan 98fda02e65 WS30: Combined land and water shader
Previously the water shader was separate and executed on a
different mesh.

This adds the water shader as a separate fragment function
(ws30-water.frag) and uses a material parameter passed in
as a Uniform to use it in preference to the usual texel
lookup.

Performance testing found a slight performance improvement
from having a single mesh, but a slight performance impact
from the extra fragment shader complexity.
2022-02-05 15:24:02 +00:00

360 lines
12 KiB
GLSL

// SPDX-FileCopyrightText: (C) 2022 Stuart Buchanan stuart13@gmail.com
// SPDX-License-Identifier: GPL-2.0-or-later
// Helper functions for WS30 water implementation, heavily based on the
// water-ALS-base.frag and waterr_ALS-high.frag
#version 130
#extension GL_EXT_texture_array : enable
// Hardcoded indexes into the texture atlas
const int ATLAS_INDEX_WATER = 0;
const int ATLAS_INDEX_WATER_REFLECTION = 1;
const int ATLAS_INDEX_WAVES_VERT10_NM = 2;
const int ATLAS_INDEX_WATER_SINE_NMAP = 3;
const int ATLAS_INDEX_WATER_REFLECTION_GREY = 4;
const int ATLAS_INDEX_SEA_FOAM = 5;
const int ATLAS_INDEX_PERLIN_NOISE_NM = 6;
const int ATLAS_INDEX_OCEAN_DEPTH = 7;
const int ATLAS_INDEX_GLOBAL_COLORS = 8;
const int ATLAS_INDEX_PACKICE_OVERLAY = 9;
// WS30 uniforms
uniform sampler2DArray textureArray;
uniform float ground_scattering;
uniform float overcast;
uniform float fg_tileWidth;
uniform float fg_tileHeight;
// Water.eff uniforms
uniform float sea_r;
uniform float sea_g;
uniform float sea_b;
uniform float osg_SimulationTime;
uniform float WindN;
uniform float WindE;
uniform float WaveFreq;
uniform float WaveAmp;
uniform float WaveSharp;
uniform float WaveAngle;
uniform float WaveFactor;
uniform float WaveDAngle;
uniform float saturation;
// WS30 varying
varying vec3 relPos;
// Water.eff varying
varying float earthShade;
varying vec3 lightdir;
varying vec4 waterTex1;
varying vec4 waterTex2;
varying vec4 waterTex4;
varying vec3 specular_light;
/////// functions /////////
float getShadowing();
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel);
void rotationmatrix(in float angle, out mat4 rotmat)
{
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
sin( angle ), cos( angle ), 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
// wave functions ///////////////////////
struct Wave {
float freq; // 2*PI / wavelength
float amp; // amplitude
float phase; // speed * 2*PI / wavelength
vec2 dir;
};
Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25));
Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25));
Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3));
Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1));
float evaluateWave(in Wave w, in vec2 pos, in float t) {
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
}
// derivative of wave function
float evaluateWaveDeriv(in Wave w, in vec2 pos, in float t) {
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
}
// sharp wave functions
float evaluateWaveSharp(in Wave w, in vec2 pos, in float t, in float k) {
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
}
float evaluateWaveDerivSharp(in Wave w, in vec2 pos, in float t, in float k) {
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
}
void sumWaves(in float angle, in float dangle, in float windScale, in float factor, out float ddx, float ddy) {
mat4 RotationMatrix;
float deriv;
vec4 P = waterTex1 * 1024;
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
P *= RotationMatrix;
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
ddx = deriv * wave0.dir.x;
ddy = deriv * wave0.dir.y;
//P.y += evaluateWave(wave1, P.xz, osg_SimulationTime);
//deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime);
//ddx += deriv * wave1.dir.x;
//ddy += deriv * wave1.dir.y;
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
ddx += deriv * wave2.dir.x;
ddy += deriv * wave2.dir.y;
//P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
//deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
//ddx += deriv * wave3.dir.x;
//ddy += deriv * wave3.dir.y;
}
vec4 generateWaterTexel()
{
vec4 texel;
float dist = length(relPos);
float tileScale = 1 / (fg_tileHeight + fg_tileWidth) / 2.0;
vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) * tileScale;
vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) * tileScale;
vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) / 10000.0 * tileScale;
mat4 RotationMatrix;
// compute direction to viewer
vec3 E = normalize(-relPos);
// compute direction to light source
vec3 L = normalize(lightdir);
// half vector
vec3 Hv = normalize(L + E);
vec3 Normal = vec3 (0.0, 0.0, 1.0);
const float water_shininess = 240.0;
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
float windScale = 15.0/(3.0 + windEffect); //wave scale
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
mixFactor = clamp(mixFactor, 0.3, 0.8);
// there's no need to do wave patterns or foam for pixels which are so far away that we can't actually see them
// we only need detail in the near zone or where the sun reflection is
int detail_flag;
if ((dist > 15000.0) && (dot(normalize(vec3 (lightdir.x, lightdir.y, 0.0) ), normalize(relPos)) < 0.7 )) {detail_flag = 0;}
else {detail_flag = 1;}
// sine waves
float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3;
float angle;
ddx = 0.0, ddy = 0.0;
ddx1 = 0.0, ddy1 = 0.0;
ddx2 = 0.0, ddy2 = 0.0;
ddx3 = 0.0, ddy3 = 0.0;
if (detail_flag == 1)
{
angle = 0.0;
wave0.freq = WaveFreq ;
wave0.amp = WaveAmp;
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 45;
wave1.freq = WaveFreq * 2.0 ;
wave1.amp = WaveAmp * 1.25;
wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle)));
angle += 30;
wave2.freq = WaveFreq * 3.5;
wave2.amp = WaveAmp * 0.75;
wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 50;
wave3.freq = WaveFreq * 3.0 ;
wave3.amp = WaveAmp * 0.75;
wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle)));
// sum waves
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy);
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1);
//reset the waves
angle = 0.0;
float waveamp = WaveAmp * 0.75;
wave0.freq = WaveFreq ;
wave0.amp = waveamp;
wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 20;
wave1.freq = WaveFreq * 2.0 ;
wave1.amp = waveamp * 1.25;
wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle)));
angle += 35;
wave2.freq = WaveFreq * 3.5;
wave2.amp = waveamp * 0.75;
wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle)));
angle -= 45;
wave3.freq = WaveFreq * 3.0 ;
wave3.amp = waveamp * 0.75;
wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle)));
//sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2);
//sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3);
}
// end sine stuff
//cover = 5.0 * smoothstep(0.6, 1.0, scattering);
//cover = 5.0 * ground_scattering;
vec4 viewt = normalize(waterTex4);
vec2 st = vec2(waterTex2 * tscale * windScale);
vec4 disdis = texture(textureArray, vec3(st, ATLAS_INDEX_WATER_SINE_NMAP)) * 2.0 - 1.0;
vec4 vNorm;
//normalmaps
st = vec2(waterTex1 + disdis * sca2) * windScale;
vec4 nmap = texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
vec4 nmap1 = texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM)) * 2.0 - 1.0;
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
st = vec2(waterTex2 * RotationMatrix * tscale) * windScale;
nmap += texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0;
nmap *= windEffect_low;
nmap1 *= windEffect_low;
// mix water and noise, modulated by factor
vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
vNorm.r += ddx + ddx1 + ddx2 + ddx3;
//if (normalmap_dds > 0) {vNorm = -vNorm;} //dds fix
//load reflection
vec4 refl ;
refl.r = sea_r;
refl.g = sea_g;
refl.b = sea_b;
refl.a = 1.0;
float intensity;
// de-saturate for reduced light
refl.rgb = mix(refl.rgb, vec3 (0.248, 0.248, 0.248), 1.0 - smoothstep(0.1, 0.8, ground_scattering));
// de-saturate light for overcast haze
intensity = length(refl.rgb);
refl.rgb = mix(refl.rgb, intensity * vec3 (1.0, 1.0, 1.0), 0.5 * smoothstep(0.1, 0.9, overcast));
vec3 N;
st = vec2(waterTex1 + disdis * sca2) * windScale;
vec3 N0 = vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
st = vec2(waterTex1 + disdis * sca) * windScale;
vec3 N1 = vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
st = vec2(waterTex1 * tscale) * windScale;
N0 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
N1 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
st = vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale;
N0 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
N1 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
st = vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale;
N0 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0;
st = vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale;
N1 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0;
N0 *= windEffect_low;
N1 *= windEffect_low;
N0.r += (ddx + ddx1 + ddx2 + ddx3);
N0.g += (ddy + ddy1 + ddy2 + ddy3);
N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness);
vec3 specular_color = vec3(specular_light * earthShade) * pow(max(0.0, dot(N, Hv)), water_shininess) * 6.0;
// secondary reflection of sky irradiance
vec3 ER = E - 2.0 * N * dot(E,N);
float ctrefl = dot(vec3(0.0,0.0,1.0), -normalize(ER));
//float fresnel = -0.5 + 8.0 * (1.0-smoothstep(0.0,0.4, dot(E,N)));
float fresnel = 8.0 * (1.0-smoothstep(0.0,0.4, dot(E,N)));
//specular_color += (ctrefl*ctrefl) * fresnel* specular_light.rgb;
specular_color += ((0.15*(1.0-ctrefl* ctrefl) * fresnel) - 0.3) * specular_light.rgb * earthShade;
vec4 specular = vec4(specular_color, 0.5);
specular = specular * saturation * 0.3 * earthShade ;
//calculate fresnel
vec4 invfres = vec4( dot(vNorm, viewt) );
vec4 fres = vec4(1.0) + invfres;
refl *= fres;
vec4 ambient_light;
//intensity = length(specular_light.rgb);
ambient_light.rgb = max(specular_light.rgb * earthShade, vec3(0.05, 0.05, 0.05));
//ambient_light.rgb = max(intensity * normalize(vec3 (0.33, 0.4, 0.5)), vec3 (0.1,0.1,0.1));
ambient_light.a = 1.0;
// compute object shadow effect
float shadowValue = getShadowing();
specular = specular * shadowValue;
refl = refl * (0.7 + 0.3 *shadowValue);
texel = refl + specular * smoothstep(0.3, 0.6, ground_scattering);
// For the clustered lighting function we use the simple up direction (Normal) to get an
// approximate lighting contribution, as the procedural normal map is done afterwards.
//texel += vec4(getClusteredLightsContribution(ecPosition.xyz, Normal, vec3(1.0)), 0.0) * light_distance_fading(dist) * 2.0 * pow(max(0.0,dot(E,N)), water_shininess);
if (dist < 10000.0)
{
float foamSlope = 0.10 + 0.1 * windScale;
float waveSlope = N.g;
if ((windEffect >= 8.0) && (waveSlope >= foamSlope)) {
//add foam
st = vec2(waterTex2 * tscale) * 25.0;
vec4 foam_texel = texture(textureArray, vec3(st, ATLAS_INDEX_SEA_FOAM) );
texel = mix(texel, max(texel, texel + foam_texel), smoothstep(0.01, 0.50, N.g));
}
}
texel *= ambient_light;
return texel;
}