// SPDX-FileCopyrightText: (C) 2022 Stuart Buchanan stuart13@gmail.com // SPDX-License-Identifier: GPL-2.0-or-later // Helper functions for WS30 water implementation, heavily based on the // water-ALS-base.frag and waterr_ALS-high.frag #version 130 #extension GL_EXT_texture_array : enable // Hardcoded indexes into the texture atlas const int ATLAS_INDEX_WATER = 0; const int ATLAS_INDEX_WATER_REFLECTION = 1; const int ATLAS_INDEX_WAVES_VERT10_NM = 2; const int ATLAS_INDEX_WATER_SINE_NMAP = 3; const int ATLAS_INDEX_WATER_REFLECTION_GREY = 4; const int ATLAS_INDEX_SEA_FOAM = 5; const int ATLAS_INDEX_PERLIN_NOISE_NM = 6; const int ATLAS_INDEX_OCEAN_DEPTH = 7; const int ATLAS_INDEX_GLOBAL_COLORS = 8; const int ATLAS_INDEX_PACKICE_OVERLAY = 9; // WS30 uniforms uniform sampler2DArray textureArray; uniform float ground_scattering; uniform float overcast; uniform float fg_tileWidth; uniform float fg_tileHeight; // Water.eff uniforms uniform float sea_r; uniform float sea_g; uniform float sea_b; uniform float osg_SimulationTime; uniform float WindN; uniform float WindE; uniform float WaveFreq; uniform float WaveAmp; uniform float WaveSharp; uniform float WaveAngle; uniform float WaveFactor; uniform float WaveDAngle; uniform float saturation; // WS30 varying varying vec3 relPos; // Water.eff varying varying float earthShade; varying vec3 lightdir; varying vec4 waterTex1; varying vec4 waterTex2; varying vec4 waterTex4; varying vec3 specular_light; /////// functions ///////// float getShadowing(); vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel); void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } // wave functions /////////////////////// struct Wave { float freq; // 2*PI / wavelength float amp; // amplitude float phase; // speed * 2*PI / wavelength vec2 dir; }; Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25)); Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25)); Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3)); Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1)); float evaluateWave(in Wave w, in vec2 pos, in float t) { return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase); } // derivative of wave function float evaluateWaveDeriv(in Wave w, in vec2 pos, in float t) { return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase); } // sharp wave functions float evaluateWaveSharp(in Wave w, in vec2 pos, in float t, in float k) { return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k); } float evaluateWaveDerivSharp(in Wave w, in vec2 pos, in float t, in float k) { return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase); } void sumWaves(in float angle, in float dangle, in float windScale, in float factor, out float ddx, float ddy) { mat4 RotationMatrix; float deriv; vec4 P = waterTex1 * 1024; rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix); P *= RotationMatrix; P.y += evaluateWave(wave0, P.xz, osg_SimulationTime); deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime ); ddx = deriv * wave0.dir.x; ddy = deriv * wave0.dir.y; //P.y += evaluateWave(wave1, P.xz, osg_SimulationTime); //deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime); //ddx += deriv * wave1.dir.x; //ddy += deriv * wave1.dir.y; P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp); ddx += deriv * wave2.dir.x; ddy += deriv * wave2.dir.y; //P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); //deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp); //ddx += deriv * wave3.dir.x; //ddy += deriv * wave3.dir.y; } vec4 generateWaterTexel() { vec4 texel; float dist = length(relPos); float tileScale = 1 / (fg_tileHeight + fg_tileWidth) / 2.0; vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) * tileScale; vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) * tileScale; vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) / 10000.0 * tileScale; mat4 RotationMatrix; // compute direction to viewer vec3 E = normalize(-relPos); // compute direction to light source vec3 L = normalize(lightdir); // half vector vec3 Hv = normalize(L + E); vec3 Normal = vec3 (0.0, 0.0, 1.0); const float water_shininess = 240.0; float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt float windScale = 15.0/(3.0 + windEffect); //wave scale float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect); mixFactor = clamp(mixFactor, 0.3, 0.8); // there's no need to do wave patterns or foam for pixels which are so far away that we can't actually see them // we only need detail in the near zone or where the sun reflection is int detail_flag; if ((dist > 15000.0) && (dot(normalize(vec3 (lightdir.x, lightdir.y, 0.0) ), normalize(relPos)) < 0.7 )) {detail_flag = 0;} else {detail_flag = 1;} // sine waves float ddx, ddx1, ddx2, ddx3, ddy, ddy1, ddy2, ddy3; float angle; ddx = 0.0, ddy = 0.0; ddx1 = 0.0, ddy1 = 0.0; ddx2 = 0.0, ddy2 = 0.0; ddx3 = 0.0, ddy3 = 0.0; if (detail_flag == 1) { angle = 0.0; wave0.freq = WaveFreq ; wave0.amp = WaveAmp; wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45; wave1.freq = WaveFreq * 2.0 ; wave1.amp = WaveAmp * 1.25; wave1.dir = vec2(0.70710, -0.7071); //vec2(cos(radians(angle)), sin(radians(angle))); angle += 30; wave2.freq = WaveFreq * 3.5; wave2.amp = WaveAmp * 0.75; wave2.dir = vec2(0.96592, -0.2588);// vec2(cos(radians(angle)), sin(radians(angle))); angle -= 50; wave3.freq = WaveFreq * 3.0 ; wave3.amp = WaveAmp * 0.75; wave3.dir = vec2(0.42261, -0.9063); //vec2(cos(radians(angle)), sin(radians(angle))); // sum waves sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy); sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1); //reset the waves angle = 0.0; float waveamp = WaveAmp * 0.75; wave0.freq = WaveFreq ; wave0.amp = waveamp; wave0.dir = vec2 (0.0, 1.0); //vec2(cos(radians(angle)), sin(radians(angle))); angle -= 20; wave1.freq = WaveFreq * 2.0 ; wave1.amp = waveamp * 1.25; wave1.dir = vec2(0.93969, -0.34202);// vec2(cos(radians(angle)), sin(radians(angle))); angle += 35; wave2.freq = WaveFreq * 3.5; wave2.amp = waveamp * 0.75; wave2.dir = vec2(0.965925, 0.25881); //vec2(cos(radians(angle)), sin(radians(angle))); angle -= 45; wave3.freq = WaveFreq * 3.0 ; wave3.amp = waveamp * 0.75; wave3.dir = vec2(0.866025, -0.5); //vec2(cos(radians(angle)), sin(radians(angle))); //sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2); //sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3); } // end sine stuff //cover = 5.0 * smoothstep(0.6, 1.0, scattering); //cover = 5.0 * ground_scattering; vec4 viewt = normalize(waterTex4); vec2 st = vec2(waterTex2 * tscale * windScale); vec4 disdis = texture(textureArray, vec3(st, ATLAS_INDEX_WATER_SINE_NMAP)) * 2.0 - 1.0; vec4 vNorm; //normalmaps st = vec2(waterTex1 + disdis * sca2) * windScale; vec4 nmap = texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0; vec4 nmap1 = texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM)) * 2.0 - 1.0; rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix); st = vec2(waterTex2 * RotationMatrix * tscale) * windScale; nmap += texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM)) * 2.0 - 1.0; nmap *= windEffect_low; nmap1 *= windEffect_low; // mix water and noise, modulated by factor vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness); vNorm.r += ddx + ddx1 + ddx2 + ddx3; //if (normalmap_dds > 0) {vNorm = -vNorm;} //dds fix //load reflection vec4 refl ; refl.r = sea_r; refl.g = sea_g; refl.b = sea_b; refl.a = 1.0; float intensity; // de-saturate for reduced light refl.rgb = mix(refl.rgb, vec3 (0.248, 0.248, 0.248), 1.0 - smoothstep(0.1, 0.8, ground_scattering)); // de-saturate light for overcast haze intensity = length(refl.rgb); refl.rgb = mix(refl.rgb, intensity * vec3 (1.0, 1.0, 1.0), 0.5 * smoothstep(0.1, 0.9, overcast)); vec3 N; st = vec2(waterTex1 + disdis * sca2) * windScale; vec3 N0 = vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0; st = vec2(waterTex1 + disdis * sca) * windScale; vec3 N1 = vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0; st = vec2(waterTex1 * tscale) * windScale; N0 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0; N1 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0; rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix); st = vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale; N0 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0; N1 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0; rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix); st = vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale; N0 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_WAVES_VERT10_NM))) * 2.0 - 1.0; st = vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale; N1 += vec3(texture(textureArray, vec3(st, ATLAS_INDEX_PERLIN_NOISE_NM))) * 2.0 - 1.0; N0 *= windEffect_low; N1 *= windEffect_low; N0.r += (ddx + ddx1 + ddx2 + ddx3); N0.g += (ddy + ddy1 + ddy2 + ddy3); N = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness); vec3 specular_color = vec3(specular_light * earthShade) * pow(max(0.0, dot(N, Hv)), water_shininess) * 6.0; // secondary reflection of sky irradiance vec3 ER = E - 2.0 * N * dot(E,N); float ctrefl = dot(vec3(0.0,0.0,1.0), -normalize(ER)); //float fresnel = -0.5 + 8.0 * (1.0-smoothstep(0.0,0.4, dot(E,N))); float fresnel = 8.0 * (1.0-smoothstep(0.0,0.4, dot(E,N))); //specular_color += (ctrefl*ctrefl) * fresnel* specular_light.rgb; specular_color += ((0.15*(1.0-ctrefl* ctrefl) * fresnel) - 0.3) * specular_light.rgb * earthShade; vec4 specular = vec4(specular_color, 0.5); specular = specular * saturation * 0.3 * earthShade ; //calculate fresnel vec4 invfres = vec4( dot(vNorm, viewt) ); vec4 fres = vec4(1.0) + invfres; refl *= fres; vec4 ambient_light; //intensity = length(specular_light.rgb); ambient_light.rgb = max(specular_light.rgb * earthShade, vec3(0.05, 0.05, 0.05)); //ambient_light.rgb = max(intensity * normalize(vec3 (0.33, 0.4, 0.5)), vec3 (0.1,0.1,0.1)); ambient_light.a = 1.0; // compute object shadow effect float shadowValue = getShadowing(); specular = specular * shadowValue; refl = refl * (0.7 + 0.3 *shadowValue); texel = refl + specular * smoothstep(0.3, 0.6, ground_scattering); // For the clustered lighting function we use the simple up direction (Normal) to get an // approximate lighting contribution, as the procedural normal map is done afterwards. //texel += vec4(getClusteredLightsContribution(ecPosition.xyz, Normal, vec3(1.0)), 0.0) * light_distance_fading(dist) * 2.0 * pow(max(0.0,dot(E,N)), water_shininess); if (dist < 10000.0) { float foamSlope = 0.10 + 0.1 * windScale; float waveSlope = N.g; if ((windEffect >= 8.0) && (waveSlope >= foamSlope)) { //add foam st = vec2(waterTex2 * tscale) * 25.0; vec4 foam_texel = texture(textureArray, vec3(st, ATLAS_INDEX_SEA_FOAM) ); texel = mix(texel, max(texel, texel + foam_texel), smoothstep(0.01, 0.50, N.g)); } } texel *= ambient_light; return texel; }