1
0
Fork 0
fgdata/Shaders/water_sine-gbuffer.frag
Emilian Huminiuc f6b74fc128 Add material ID to provide increased specular effect in Rembrandt for water and ubershader.
Signed-off-by: Emilian Huminiuc <emilianh@gmail.com>
2012-06-26 02:18:00 +03:00

383 lines
13 KiB
GLSL

// This shader is mostly an adaptation of the shader found at
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
// Michael Horsch - 2005
// Major update and revisions - 2011-10-07
// Emilian Huminiuc and Vivian Meazza
// Optimisation - 2012-5-05
// Based on ideas by Thorsten Renk
// Emilian Huminiuc and Vivian Meazza
#version 120
uniform sampler2D water_normalmap ;
uniform sampler2D water_reflection ;
uniform sampler2D water_dudvmap ;
uniform sampler2D water_reflection_grey ;
uniform sampler2D sea_foam ;
uniform sampler2D perlin_normalmap ;
uniform sampler3D Noise ;
uniform float saturation ;
uniform float Overcast ;
uniform float WindE ;
uniform float WindN ;
uniform float CloudCover0 ;
uniform float CloudCover1 ;
uniform float CloudCover2 ;
uniform float CloudCover3 ;
uniform float CloudCover4 ;
uniform float osg_SimulationTime ;
uniform float WaveFreq ;
uniform float WaveAmp ;
uniform float WaveSharp ;
uniform float WaveAngle ;
uniform float WaveFactor ;
uniform float WaveDAngle ;
uniform float normalmap_dds ;
uniform int Status ;
varying vec4 waterTex1 ; //moving texcoords
varying vec4 waterTex2 ; //moving texcoords
varying vec3 viewerdir ;
varying vec3 lightdir ;
varying vec3 normal ;
varying vec3 Vnormal ;
varying vec3 VTangent ;
varying vec3 VBinormal ;
const vec4 AllOnes = vec4(1.0);
/////// functions /////////
void encode_gbuffer(vec3 normal, vec3 color, int mId, float specular, float shininess, float emission, float depth);
void rotationmatrix(in float angle, out mat4 rotmat)
{
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
sin( angle ), cos( angle ), 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
// wave functions ///////////////////////
struct Wave {
float freq ; // 2*PI / wavelength
float amp ; // amplitude
float phase ; // speed * 2*PI / wavelength
vec2 dir ;
};
Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25)) ;
Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25)) ;
Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3)) ;
Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1)) ;
float evaluateWave(in Wave w, vec2 pos, float t)
{
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase) ;
}
// derivative of wave function
float evaluateWaveDeriv(Wave w, vec2 pos, float t)
{
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase) ;
}
// sharp wave functions
float evaluateWaveSharp(Wave w, vec2 pos, float t, float k)
{
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k) ;
}
float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k)
{
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase) ;
}
void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy)
{
mat4 RotationMatrix ;
float deriv ;
vec4 P = waterTex1 * 1024.0 ;
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix) ;
P *= RotationMatrix ;
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime) ;
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime ) ;
ddx = deriv * wave0.dir.x ;
ddy = deriv * wave0.dir.y ;
P.y += evaluateWave(wave1, P.xz, osg_SimulationTime) ;
deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime) ;
ddx += deriv * wave1.dir.x ;
ddy += deriv * wave1.dir.y ;
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp) ;
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp) ;
ddx += deriv * wave2.dir.x ;
ddy += deriv * wave2.dir.y ;
P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp) ;
deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp) ;
ddx += deriv * wave3.dir.x ;
ddy += deriv * wave3.dir.y ;
}
void main(void)
{
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) ;
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) ;
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) ;
mat4 RotationMatrix ;
// compute direction to viewer
vec3 E = normalize(viewerdir) ;
// compute direction to light source
//vec3 L = normalize(lightdir);
// half vector
//vec3 H = normalize(L + E);
vec3 Normal = normalize(normal) ;
vec3 vNormal = normalize(Vnormal) ;
const float water_shininess = 128.0 ;
// float range = gl_ProjectionMatrix[3].z/(gl_FragCoord.z * -2.0 + 1.0 - gl_ProjectionMatrix[2].z);
// approximate cloud cover
float cover = 0.0 ;
//bool Status = true;
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6 ; //wind speed in kt
float windScale = 15.0/(3.0 + windEffect) ; //wave scale
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect) ; //low windspeed wave filter
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect) ; //wave roughness filter
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
mixFactor = clamp(mixFactor, 0.3, 0.8);
// sine waves
// Test data
//float WaveFreq =1.0;
//float WaveAmp = 1000.0;
//float WaveSharp = 10.0;
vec4 ddxVec = vec4(0.0) ;
vec4 ddyVec = vec4(0.0) ;
int detailFlag = 0 ;
//uncomment to test
//range = -20000;
// if (range > -15000 || dot(Normal,H) > 0.95 ) {
float ddx = 0.0, ddy = 0.0 ;
float ddx1 = 0.0, ddy1 = 0.0 ;
float ddx2 = 0.0, ddy2 = 0.0 ;
float ddx3 = 0.0, ddy3 = 0.0 ;
float waveamp ;
float angle = 0.0 ;
wave0.freq = WaveFreq ;
wave0.amp = WaveAmp ;
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
angle -= 45 ;
wave1.freq = WaveFreq * 2.0 ;
wave1.amp = WaveAmp * 1.25 ;
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
angle += 30;
wave2.freq = WaveFreq * 3.5 ;
wave2.amp = WaveAmp * 0.75 ;
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
angle -= 50 ;
wave3.freq = WaveFreq * 3.0 ;
wave3.amp = WaveAmp * 0.75 ;
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
// sum waves
ddx = 0.0, ddy = 0.0 ;
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy) ;
ddx1 = 0.0, ddy1 = 0.0 ;
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1) ;
//reset the waves
angle = 0.0 ;
waveamp = WaveAmp * 0.75 ;
wave0.freq = WaveFreq ;
wave0.amp = waveamp ;
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
angle -= 20 ;
wave1.freq = WaveFreq * 2.0 ;
wave1.amp = waveamp * 1.25 ;
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
angle += 35 ;
wave2.freq = WaveFreq * 3.5 ;
wave2.amp = waveamp * 0.75 ;
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
angle -= 45 ;
wave3.freq = WaveFreq * 3.0 ;
wave3.amp = waveamp * 0.75 ;
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
// sum waves
ddx2 = 0.0, ddy2 = 0.0 ;
sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2) ;
ddx3 = 0.0, ddy3 = 0.0 ;
sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3) ;
ddxVec = vec4(ddx, ddx1, ddx2, ddx3) ;
ddyVec = vec4(ddy, ddy1, ddy2, ddy3) ;
//toggle detailFlag
//detailFlag = 1 ;
// } // end sine stuff
float ddxSum = dot(ddxVec, AllOnes) ;
float ddySum = dot(ddyVec, AllOnes) ;
if (Status == 1){
cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4) ;
} else {
// hack to allow for Overcast not to be set by Local Weather
if (Overcast == 0){
cover = 5;
} else {
cover = Overcast * 5;
}
}
// vec4 viewt = normalize(waterTex4);
vec4 viewt = vec4(-E, 0.0) * 0.6 ;
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0 ;
//normalmaps
vec4 nmap = texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0 ;
vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0 ;
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0 ;
nmap1 += texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0 ;
nmap *= windEffect_low ;
nmap1 *= windEffect_low ;
// mix water and noise, modulated by factor
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness) ;
vNorm.r += ddxSum ;
if (normalmap_dds > 0)//dds fix
vNorm = -vNorm ;
//load reflection
//vec4 tmp = vec4(lightdir, 0.0);
vec4 tmp = vec4(0.0);
vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ;
vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ;
vec4 refl ;
// Test data
// cover = 0;
if(cover >= 1.5){
refl = normalize(refTex);
refl.a = 1.0;
}
else
{
refl = normalize(refTexGrey);
refl.r *= (0.75 + 0.15 * cover);
refl.g *= (0.80 + 0.15 * cover);
refl.b *= (0.875 + 0.125 * cover);
refl.a = 1.0;
}
vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0);
vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0);
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0);
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0);
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0);
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0);
// if(detailFlag > 0)
// {
N0 *= windEffect_low;
N1 *= windEffect_low;
N0.r += ddxSum;
N0.g += ddySum;
vec3 N2 = normalize(mix(N0, N1, mixFactor) * waveRoughness);
Normal = normalize(N2.x * VTangent + N2.y * VBinormal + N2.z * Normal);
vNormal = normalize(mix(vNormal + N0, vNormal + N1, mixFactor) * waveRoughness);
if (normalmap_dds > 0){ //dds fix
Normal = -Normal;
vNormal = -vNormal;
}
// }
// specular
// vec3 specular_color = vec3(1.0) * pow(max(0.0, dot(Normal, H)), water_shininess) * 6.0;
// vec4 specular = vec4(specular_color, 0.5);
//specular_color *= saturation * 0.3 ;
//float specular = saturation * 0.3;
//calculate fresnel
vec4 invfres = vec4( dot(vNorm, viewt) );
vec4 fres = vec4(1.0) + invfres;
refl *= fres;
//calculate final colour
vec4 finalColor = refl;
//add foam
vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0);
// if (range > -10000.0){
float foamSlope = 0.1 + 0.1 * windScale;
float waveSlope = vNormal.g;
if (windEffect >= 8.0)
if (waveSlope >= foamSlope){
finalColor = mix( finalColor,
max(finalColor, finalColor + foam_texel),
smoothstep(0.01, 0.50, vNormal.g)
);
}
// } // end range
float emission = dot( gl_FrontLightModelProduct.sceneColor.rgb + gl_FrontMaterial.emission.rgb,
vec3( 0.3, 0.59, 0.11 )
);
float specular = smoothstep(0.0, 3.5, cover);
encode_gbuffer(Normal, finalColor.rgb, 255, specular, water_shininess, emission, gl_FragCoord.z);
}