// This shader is mostly an adaptation of the shader found at // http://www.bonzaisoftware.com/water_tut.html and its glsl conversion // available at http://forum.bonzaisoftware.com/viewthread.php?tid=10 // Michael Horsch - 2005 // Major update and revisions - 2011-10-07 // Emilian Huminiuc and Vivian Meazza // Optimisation - 2012-5-05 // Based on ideas by Thorsten Renk // Emilian Huminiuc and Vivian Meazza #version 120 uniform sampler2D water_normalmap ; uniform sampler2D water_reflection ; uniform sampler2D water_dudvmap ; uniform sampler2D water_reflection_grey ; uniform sampler2D sea_foam ; uniform sampler2D perlin_normalmap ; uniform sampler3D Noise ; uniform float saturation ; uniform float Overcast ; uniform float WindE ; uniform float WindN ; uniform float CloudCover0 ; uniform float CloudCover1 ; uniform float CloudCover2 ; uniform float CloudCover3 ; uniform float CloudCover4 ; uniform float osg_SimulationTime ; uniform float WaveFreq ; uniform float WaveAmp ; uniform float WaveSharp ; uniform float WaveAngle ; uniform float WaveFactor ; uniform float WaveDAngle ; uniform float normalmap_dds ; uniform int Status ; varying vec4 waterTex1 ; //moving texcoords varying vec4 waterTex2 ; //moving texcoords varying vec3 viewerdir ; varying vec3 lightdir ; varying vec3 normal ; varying vec3 Vnormal ; varying vec3 VTangent ; varying vec3 VBinormal ; const vec4 AllOnes = vec4(1.0); /////// functions ///////// void encode_gbuffer(vec3 normal, vec3 color, int mId, float specular, float shininess, float emission, float depth); void rotationmatrix(in float angle, out mat4 rotmat) { rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0, sin( angle ), cos( angle ), 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } // wave functions /////////////////////// struct Wave { float freq ; // 2*PI / wavelength float amp ; // amplitude float phase ; // speed * 2*PI / wavelength vec2 dir ; }; Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25)) ; Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25)) ; Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3)) ; Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1)) ; float evaluateWave(in Wave w, vec2 pos, float t) { return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase) ; } // derivative of wave function float evaluateWaveDeriv(Wave w, vec2 pos, float t) { return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase) ; } // sharp wave functions float evaluateWaveSharp(Wave w, vec2 pos, float t, float k) { return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k) ; } float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k) { return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1) * cos( dot(w.dir, pos)*w.freq + t*w.phase) ; } void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy) { mat4 RotationMatrix ; float deriv ; vec4 P = waterTex1 * 1024.0 ; rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix) ; P *= RotationMatrix ; P.y += evaluateWave(wave0, P.xz, osg_SimulationTime) ; deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime ) ; ddx = deriv * wave0.dir.x ; ddy = deriv * wave0.dir.y ; P.y += evaluateWave(wave1, P.xz, osg_SimulationTime) ; deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime) ; ddx += deriv * wave1.dir.x ; ddy += deriv * wave1.dir.y ; P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp) ; deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp) ; ddx += deriv * wave2.dir.x ; ddy += deriv * wave2.dir.y ; P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp) ; deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp) ; ddx += deriv * wave3.dir.x ; ddy += deriv * wave3.dir.y ; } void main(void) { const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) ; const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) ; const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) ; mat4 RotationMatrix ; // compute direction to viewer vec3 E = normalize(viewerdir) ; // compute direction to light source //vec3 L = normalize(lightdir); // half vector //vec3 H = normalize(L + E); vec3 Normal = normalize(normal) ; vec3 vNormal = normalize(Vnormal) ; const float water_shininess = 128.0 ; // float range = gl_ProjectionMatrix[3].z/(gl_FragCoord.z * -2.0 + 1.0 - gl_ProjectionMatrix[2].z); // approximate cloud cover float cover = 0.0 ; //bool Status = true; float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6 ; //wind speed in kt float windScale = 15.0/(3.0 + windEffect) ; //wave scale float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect) ; //low windspeed wave filter float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect) ; //wave roughness filter float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect); mixFactor = clamp(mixFactor, 0.3, 0.8); // sine waves // Test data //float WaveFreq =1.0; //float WaveAmp = 1000.0; //float WaveSharp = 10.0; vec4 ddxVec = vec4(0.0) ; vec4 ddyVec = vec4(0.0) ; int detailFlag = 0 ; //uncomment to test //range = -20000; // if (range > -15000 || dot(Normal,H) > 0.95 ) { float ddx = 0.0, ddy = 0.0 ; float ddx1 = 0.0, ddy1 = 0.0 ; float ddx2 = 0.0, ddy2 = 0.0 ; float ddx3 = 0.0, ddy3 = 0.0 ; float waveamp ; float angle = 0.0 ; wave0.freq = WaveFreq ; wave0.amp = WaveAmp ; wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; angle -= 45 ; wave1.freq = WaveFreq * 2.0 ; wave1.amp = WaveAmp * 1.25 ; wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; angle += 30; wave2.freq = WaveFreq * 3.5 ; wave2.amp = WaveAmp * 0.75 ; wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; angle -= 50 ; wave3.freq = WaveFreq * 3.0 ; wave3.amp = WaveAmp * 0.75 ; wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; // sum waves ddx = 0.0, ddy = 0.0 ; sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy) ; ddx1 = 0.0, ddy1 = 0.0 ; sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1) ; //reset the waves angle = 0.0 ; waveamp = WaveAmp * 0.75 ; wave0.freq = WaveFreq ; wave0.amp = waveamp ; wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; angle -= 20 ; wave1.freq = WaveFreq * 2.0 ; wave1.amp = waveamp * 1.25 ; wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; angle += 35 ; wave2.freq = WaveFreq * 3.5 ; wave2.amp = waveamp * 0.75 ; wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; angle -= 45 ; wave3.freq = WaveFreq * 3.0 ; wave3.amp = waveamp * 0.75 ; wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ; // sum waves ddx2 = 0.0, ddy2 = 0.0 ; sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2) ; ddx3 = 0.0, ddy3 = 0.0 ; sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3) ; ddxVec = vec4(ddx, ddx1, ddx2, ddx3) ; ddyVec = vec4(ddy, ddy1, ddy2, ddy3) ; //toggle detailFlag //detailFlag = 1 ; // } // end sine stuff float ddxSum = dot(ddxVec, AllOnes) ; float ddySum = dot(ddyVec, AllOnes) ; if (Status == 1){ cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4) ; } else { // hack to allow for Overcast not to be set by Local Weather if (Overcast == 0){ cover = 5; } else { cover = Overcast * 5; } } // vec4 viewt = normalize(waterTex4); vec4 viewt = vec4(-E, 0.0) * 0.6 ; vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0 ; //normalmaps vec4 nmap = texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0 ; vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0 ; rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix); nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0 ; nmap1 += texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0 ; nmap *= windEffect_low ; nmap1 *= windEffect_low ; // mix water and noise, modulated by factor vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness) ; vNorm.r += ddxSum ; if (normalmap_dds > 0)//dds fix vNorm = -vNorm ; //load reflection //vec4 tmp = vec4(lightdir, 0.0); vec4 tmp = vec4(0.0); vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ; vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ; vec4 refl ; // Test data // cover = 0; if(cover >= 1.5){ refl = normalize(refTex); refl.a = 1.0; } else { refl = normalize(refTexGrey); refl.r *= (0.75 + 0.15 * cover); refl.g *= (0.80 + 0.15 * cover); refl.b *= (0.875 + 0.125 * cover); refl.a = 1.0; } vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0); vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0); rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0); rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix); N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0); N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0); // if(detailFlag > 0) // { N0 *= windEffect_low; N1 *= windEffect_low; N0.r += ddxSum; N0.g += ddySum; vec3 N2 = normalize(mix(N0, N1, mixFactor) * waveRoughness); Normal = normalize(N2.x * VTangent + N2.y * VBinormal + N2.z * Normal); vNormal = normalize(mix(vNormal + N0, vNormal + N1, mixFactor) * waveRoughness); if (normalmap_dds > 0){ //dds fix Normal = -Normal; vNormal = -vNormal; } // } // specular // vec3 specular_color = vec3(1.0) * pow(max(0.0, dot(Normal, H)), water_shininess) * 6.0; // vec4 specular = vec4(specular_color, 0.5); //specular_color *= saturation * 0.3 ; //float specular = saturation * 0.3; //calculate fresnel vec4 invfres = vec4( dot(vNorm, viewt) ); vec4 fres = vec4(1.0) + invfres; refl *= fres; //calculate final colour vec4 finalColor = refl; //add foam vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0); // if (range > -10000.0){ float foamSlope = 0.1 + 0.1 * windScale; float waveSlope = vNormal.g; if (windEffect >= 8.0) if (waveSlope >= foamSlope){ finalColor = mix( finalColor, max(finalColor, finalColor + foam_texel), smoothstep(0.01, 0.50, vNormal.g) ); } // } // end range float emission = dot( gl_FrontLightModelProduct.sceneColor.rgb + gl_FrontMaterial.emission.rgb, vec3( 0.3, 0.59, 0.11 ) ); float specular = smoothstep(0.0, 3.5, cover); encode_gbuffer(Normal, finalColor.rgb, 255, specular, water_shininess, emission, gl_FragCoord.z); }