1
0
Fork 0
fgdata/Shaders/building-model-ALS-ultra.vert
Stuart Buchanan 87e9118965 Shader buildings - split wall and roof tex index
Previously there was very limited texture variations
as a given texture index was used for both the wall
and ceiling.  Now these can be specified separately,
allowing for more variation in both STG defined and
random buildings.

Requires simgear commit 053bda26a43314a91b01b08cd4617da82f7ab807
2019-09-25 21:56:22 +01:00

165 lines
5.7 KiB
GLSL

// -*- mode: C; -*-
// Licence: GPL v2
// © Emilian Huminiuc and Vivian Meazza 2011
#version 120
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScaleRotate; // (width, depth, height)
attribute vec3 rotPitchWtex0x; // (rotation, pitch height, texture x offset)
attribute vec3 wtex0yTex1xTex1y; // (wall texture y offset, wall/roof texture x gain, wall/roof texture y gain)
attribute vec3 rtex0xRtex0y; // (roof texture y offset, roof texture x gain, texture y gain)
varying vec3 rawpos;
varying vec3 VNormal;
varying vec3 VTangent;
varying vec3 VBinormal;
varying vec3 vViewVec;
varying vec3 vertVec;
varying vec3 reflVec;
varying float alpha;
attribute vec3 tangent;
attribute vec3 binormal;
uniform float pitch;
uniform float roll;
uniform float hdg;
uniform int refl_dynamic;
uniform int nmap_enabled;
uniform int shader_qual;
uniform int rembrandt_enabled;
uniform int color_is_position;
//////Fog Include///////////
// uniform int fogType;
// void fog_Func(int type);
////////////////////////////
void rotationMatrixPR(in float sinRx, in float cosRx, in float sinRy, in float cosRy, out mat4 rotmat)
{
rotmat = mat4( cosRy , sinRx * sinRy , cosRx * sinRy, 0.0,
0.0 , cosRx , -sinRx * cosRx, 0.0,
-sinRy, sinRx * cosRy, cosRx * cosRy , 0.0,
0.0 , 0.0 , 0.0 , 1.0 );
}
void rotationMatrixH(in float sinRz, in float cosRz, out mat4 rotmat)
{
rotmat = mat4( cosRz, -sinRz, 0.0, 0.0,
sinRz, cosRz, 0.0, 0.0,
0.0 , 0.0 , 1.0, 0.0,
0.0 , 0.0 , 0.0, 1.0 );
}
void main(void)
{
// Determine the rotation for the building.
float sr = sin(6.28 * rotPitchWtex0x.x);
float cr = cos(6.28 * rotPitchWtex0x.x);
// Adjust pitch of roof to the correct height.
// The top roof vertices are the only ones that have fractional z values (1.5),
// so we can use this to identify them and scale up any pitched roof vertex to
// the correct pitch (rotPitchWtex0x.y * 2.0 because of the fractional z value),
// then scale down by the building height (instanceScaleRotate.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
rawpos = gl_Vertex.xyz;
rawpos.z = rawpos.z + fract(rawpos.z) * 2.0 * rotPitchWtex0x.y / instanceScaleRotate.z - fract(rawpos.z);
rawpos = rawpos * instanceScaleRotate.xyz;
// Rotation of the building and movement into rawpos
rawpos.xy = vec2(dot(rawpos.xy, vec2(cr, sr)), dot(rawpos.xy, vec2(-sr, cr)));
rawpos = rawpos + instancePosition.xyz;
vec4 ecPosition = gl_ModelViewMatrix * vec4(rawpos, 1.0);
// Texture coordinates are stored as:
// - a separate offset for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a shared gain value (tex1x, tex1y)
//
// The vertex color value selects between them, with glColor.x=1 indicating walls
// and glColor.y=1 indicating roofs.
// Finally, the roof texture is on the left of the texture sheet
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*rotPitchWtex0x.z + gl_Color.y*rtex0xRtex0y.x),
gl_Color.x*wtex0yTex1xTex1y.x + gl_Color.y*rtex0xRtex0y.y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * wtex0yTex1xTex1y.y;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * wtex0yTex1xTex1y.z;
// Rotate the normal.
vec3 normal = gl_Normal;
// The roof pieces have a normal of (+/-0.7, 0.0, 0.7)
// If the roof is flat, then we need to change it to (0,0,1).
// First term evaluates for normals without a +z component (all except roof)
// Second term evaluates for roof normals with a pitch
// Third term evaluates for flat roofs
normal = step(0.5, 1.0 - normal.z) * normal +
step(0.5, normal.z) * clamp(rotPitchWtex0x.y, 0.0, 1.0) * normal +
step(0.5, normal.z) * (1.0 - clamp(rotPitchWtex0x.y, 0.0, 1.0)) * vec3(0,0,1);
// Rotate the normal as per the building.
normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr)));
VNormal = normalize(gl_NormalMatrix * normal);
vec3 n = normalize(normal);
vec3 tempTangent = cross(n, vec3(1.0,0.0,0.0));
vec3 tempBinormal = cross(n, tempTangent);
if (nmap_enabled > 0){
tempTangent = tangent;
tempBinormal = binormal;
}
VTangent = normalize(gl_NormalMatrix * tempTangent);
VBinormal = normalize(gl_NormalMatrix * tempBinormal);
vec3 t = tempTangent;
vec3 b = tempBinormal;
// Super hack: if diffuse material alpha is less than 1, assume a
// transparency animation is at work
if (gl_FrontMaterial.diffuse.a < 1.0)
alpha = gl_FrontMaterial.diffuse.a;
else
alpha = 1.0;
// Vertex in eye coordinates
vertVec = ecPosition.xyz;
vViewVec.x = dot(t, vertVec);
vViewVec.y = dot(b, vertVec);
vViewVec.z = dot(n, vertVec);
// calculate the reflection vector
vec4 reflect_eye = vec4(reflect(vertVec, VNormal), 0.0);
vec3 reflVec_stat = normalize(gl_ModelViewMatrixInverse * reflect_eye).xyz;
if (refl_dynamic > 0){
//prepare rotation matrix
mat4 RotMatPR;
mat4 RotMatH;
float _roll = roll;
if (_roll>90.0 || _roll < -90.0)
{
_roll = -_roll;
}
float cosRx = cos(radians(_roll));
float sinRx = sin(radians(_roll));
float cosRy = cos(radians(-pitch));
float sinRy = sin(radians(-pitch));
float cosRz = cos(radians(hdg));
float sinRz = sin(radians(hdg));
rotationMatrixPR(sinRx, cosRx, sinRy, cosRy, RotMatPR);
rotationMatrixH(sinRz, cosRz, RotMatH);
vec3 reflVec_dyn = (RotMatH * (RotMatPR * normalize(gl_ModelViewMatrixInverse * reflect_eye))).xyz;
reflVec = reflVec_dyn;
} else {
reflVec = reflVec_stat;
}
if(rembrandt_enabled < 1){
gl_FrontColor = gl_FrontMaterial.emission + vec4(1.0,1.0,1.0,1.0)
* (gl_LightModel.ambient + gl_LightSource[0].ambient);
} else {
gl_FrontColor = vec4(1.0,1.0,1.0,1.0);
}
gl_Position = gl_ModelViewProjectionMatrix * vec4(rawpos,1.0);
}