// -*- mode: C; -*- // Licence: GPL v2 // © Emilian Huminiuc and Vivian Meazza 2011 #version 120 attribute vec3 instancePosition; // (x,y,z) attribute vec3 instanceScaleRotate; // (width, depth, height) attribute vec3 rotPitchWtex0x; // (rotation, pitch height, texture x offset) attribute vec3 wtex0yTex1xTex1y; // (wall texture y offset, wall/roof texture x gain, wall/roof texture y gain) attribute vec3 rtex0xRtex0y; // (roof texture y offset, roof texture x gain, texture y gain) varying vec3 rawpos; varying vec3 VNormal; varying vec3 VTangent; varying vec3 VBinormal; varying vec3 vViewVec; varying vec3 vertVec; varying vec3 reflVec; varying float alpha; attribute vec3 tangent; attribute vec3 binormal; uniform float pitch; uniform float roll; uniform float hdg; uniform int refl_dynamic; uniform int nmap_enabled; uniform int shader_qual; uniform int rembrandt_enabled; uniform int color_is_position; //////Fog Include/////////// // uniform int fogType; // void fog_Func(int type); //////////////////////////// void rotationMatrixPR(in float sinRx, in float cosRx, in float sinRy, in float cosRy, out mat4 rotmat) { rotmat = mat4( cosRy , sinRx * sinRy , cosRx * sinRy, 0.0, 0.0 , cosRx , -sinRx * cosRx, 0.0, -sinRy, sinRx * cosRy, cosRx * cosRy , 0.0, 0.0 , 0.0 , 0.0 , 1.0 ); } void rotationMatrixH(in float sinRz, in float cosRz, out mat4 rotmat) { rotmat = mat4( cosRz, -sinRz, 0.0, 0.0, sinRz, cosRz, 0.0, 0.0, 0.0 , 0.0 , 1.0, 0.0, 0.0 , 0.0 , 0.0, 1.0 ); } void main(void) { // Determine the rotation for the building. float sr = sin(6.28 * rotPitchWtex0x.x); float cr = cos(6.28 * rotPitchWtex0x.x); // Adjust pitch of roof to the correct height. // The top roof vertices are the only ones that have fractional z values (1.5), // so we can use this to identify them and scale up any pitched roof vertex to // the correct pitch (rotPitchWtex0x.y * 2.0 because of the fractional z value), // then scale down by the building height (instanceScaleRotate.z) because // immediately afterwards we will scale UP the vertex to the correct scale. rawpos = gl_Vertex.xyz; rawpos.z = rawpos.z + fract(rawpos.z) * 2.0 * rotPitchWtex0x.y / instanceScaleRotate.z - fract(rawpos.z); rawpos = rawpos * instanceScaleRotate.xyz; // Rotation of the building and movement into rawpos rawpos.xy = vec2(dot(rawpos.xy, vec2(cr, sr)), dot(rawpos.xy, vec2(-sr, cr))); rawpos = rawpos + instancePosition.xyz; vec4 ecPosition = gl_ModelViewMatrix * vec4(rawpos, 1.0); // Texture coordinates are stored as: // - a separate offset for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y) // - a shared gain value (tex1x, tex1y) // // The vertex color value selects between them, with glColor.x=1 indicating walls // and glColor.y=1 indicating roofs. // Finally, the roof texture is on the left of the texture sheet vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*rotPitchWtex0x.z + gl_Color.y*rtex0xRtex0y.x), gl_Color.x*wtex0yTex1xTex1y.x + gl_Color.y*rtex0xRtex0y.y); gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * wtex0yTex1xTex1y.y; gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * wtex0yTex1xTex1y.z; // Rotate the normal. vec3 normal = gl_Normal; // The roof pieces have a normal of (+/-0.7, 0.0, 0.7) // If the roof is flat, then we need to change it to (0,0,1). // First term evaluates for normals without a +z component (all except roof) // Second term evaluates for roof normals with a pitch // Third term evaluates for flat roofs normal = step(0.5, 1.0 - normal.z) * normal + step(0.5, normal.z) * clamp(rotPitchWtex0x.y, 0.0, 1.0) * normal + step(0.5, normal.z) * (1.0 - clamp(rotPitchWtex0x.y, 0.0, 1.0)) * vec3(0,0,1); // Rotate the normal as per the building. normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr))); VNormal = normalize(gl_NormalMatrix * normal); vec3 n = normalize(normal); vec3 tempTangent = cross(n, vec3(1.0,0.0,0.0)); vec3 tempBinormal = cross(n, tempTangent); if (nmap_enabled > 0){ tempTangent = tangent; tempBinormal = binormal; } VTangent = normalize(gl_NormalMatrix * tempTangent); VBinormal = normalize(gl_NormalMatrix * tempBinormal); vec3 t = tempTangent; vec3 b = tempBinormal; // Super hack: if diffuse material alpha is less than 1, assume a // transparency animation is at work if (gl_FrontMaterial.diffuse.a < 1.0) alpha = gl_FrontMaterial.diffuse.a; else alpha = 1.0; // Vertex in eye coordinates vertVec = ecPosition.xyz; vViewVec.x = dot(t, vertVec); vViewVec.y = dot(b, vertVec); vViewVec.z = dot(n, vertVec); // calculate the reflection vector vec4 reflect_eye = vec4(reflect(vertVec, VNormal), 0.0); vec3 reflVec_stat = normalize(gl_ModelViewMatrixInverse * reflect_eye).xyz; if (refl_dynamic > 0){ //prepare rotation matrix mat4 RotMatPR; mat4 RotMatH; float _roll = roll; if (_roll>90.0 || _roll < -90.0) { _roll = -_roll; } float cosRx = cos(radians(_roll)); float sinRx = sin(radians(_roll)); float cosRy = cos(radians(-pitch)); float sinRy = sin(radians(-pitch)); float cosRz = cos(radians(hdg)); float sinRz = sin(radians(hdg)); rotationMatrixPR(sinRx, cosRx, sinRy, cosRy, RotMatPR); rotationMatrixH(sinRz, cosRz, RotMatH); vec3 reflVec_dyn = (RotMatH * (RotMatPR * normalize(gl_ModelViewMatrixInverse * reflect_eye))).xyz; reflVec = reflVec_dyn; } else { reflVec = reflVec_stat; } if(rembrandt_enabled < 1){ gl_FrontColor = gl_FrontMaterial.emission + vec4(1.0,1.0,1.0,1.0) * (gl_LightModel.ambient + gl_LightSource[0].ambient); } else { gl_FrontColor = vec4(1.0,1.0,1.0,1.0); } gl_Position = gl_ModelViewProjectionMatrix * vec4(rawpos,1.0); }