1
0
Fork 0
fgdata/Shaders/building-deferred-gbuffer.vert
Stuart Buchanan 119fb5efe2 Random Buildings - improved texture mapping
Previously the front and side faces of random/OSM buildings
had identical texture coordinates.  This resulted in the sides
of buildings texture mapping being squeezed or stretched.

This change generates a separate texture mapping for the sides
of the buildings.
2019-11-23 17:08:04 +00:00

77 lines
3.5 KiB
GLSL

// -*- mode: C; -*-
// Licence: GPL v2
// Author: Frederic Bouvier.
//
#version 120
#extension GL_EXT_draw_instanced : enable
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScaleRotate; // (width, depth, height)
attribute vec3 rotPitchWtexX0; // (rotation, pitch height, wall texture x0)
attribute vec3 wtexY0FRtexx1FSRtexY1; // (wall texture y0, front/roof texture x1, front/side/roof texture y1)
attribute vec3 rtexX0RtexY0StexX1; // (roof texture x0, roof texture y0, side texture x1)
attribute vec3 rooftopscale; // (rooftop x scale, rooftop y scale)
varying vec3 ecNormal;
varying float alpha;
void main() {
// Determine the rotation for the building.
float sr = sin(6.28 * rotPitchWtexX0.x);
float cr = cos(6.28 * rotPitchWtexX0.x);
vec3 position = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * rooftopscale.x - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * rooftopscale.y);
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScaleRotate.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
position.z = position.z + gl_Color.z * rotPitchWtexX0.y / instanceScaleRotate.z;
position = position * instanceScaleRotate.xyz;
// Rotation of the building and movement into position
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
position = position + instancePosition.xyz;
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
// Texture coordinates are stored as:
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = rotPitchWtexX0.z; // Front/Side texture X0
float wtex0y = wtexY0FRtexx1FSRtexY1.x; // Front/Side texture Y0
float rtex0x = rtexX0RtexY0StexX1.x; // Roof texture X0
float rtex0y = rtexX0RtexY0StexX1.y; // Roof texture Y0
float wtex1x = wtexY0FRtexx1FSRtexY1.y; // Front/Roof texture X1
float stex1x = rtexX0RtexY0StexX1.z; // Side texture X1
float wtex1y = wtexY0FRtexx1FSRtexY1.z; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
// Rotate the normal.
ecNormal = gl_Normal;
ecNormal.xy = vec2(dot(ecNormal.xy, vec2(cr, sr)), dot(ecNormal.xy, vec2(-sr, cr)));
ecNormal = gl_NormalMatrix * ecNormal;
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
gl_FrontColor = vec4(1.0, 1.0, 1.0, 1.0);
gl_BackColor = vec4(1.0, 1.0, 1.0, 1.0);
alpha = 1.0;
}