// -*- mode: C; -*- // Licence: GPL v2 // Author: Frederic Bouvier. // #version 120 #extension GL_EXT_draw_instanced : enable attribute vec3 instancePosition; // (x,y,z) attribute vec3 instanceScaleRotate; // (width, depth, height) attribute vec3 rotPitchWtexX0; // (rotation, pitch height, wall texture x0) attribute vec3 wtexY0FRtexx1FSRtexY1; // (wall texture y0, front/roof texture x1, front/side/roof texture y1) attribute vec3 rtexX0RtexY0StexX1; // (roof texture x0, roof texture y0, side texture x1) attribute vec3 rooftopscale; // (rooftop x scale, rooftop y scale) varying vec3 ecNormal; varying float alpha; void main() { // Determine the rotation for the building. float sr = sin(6.28 * rotPitchWtexX0.x); float cr = cos(6.28 * rotPitchWtexX0.x); vec3 position = gl_Vertex.xyz; // Adjust the very top of the roof to match the rooftop scaling. This shapes // the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * rooftopscale.x - 0.5); position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * rooftopscale.y); // Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z // Scale down by the building height (instanceScaleRotate.z) because // immediately afterwards we will scale UP the vertex to the correct scale. position.z = position.z + gl_Color.z * rotPitchWtexX0.y / instanceScaleRotate.z; position = position * instanceScaleRotate.xyz; // Rotation of the building and movement into position position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr))); position = position + instancePosition.xyz; gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0); // Texture coordinates are stored as: // - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y) // - a semi-shared (x1, y1) so that the front and side of the building can have // different texture mappings // // The vertex color value selects between them: // gl_Color.x=1 indicates front/back walls // gl_Color.y=1 indicates roof // gl_Color.z=1 indicates top roof vertexs (used above) // gl_Color.a=1 indicates sides // Finally, the roof texture is on the right of the texture sheet float wtex0x = rotPitchWtexX0.z; // Front/Side texture X0 float wtex0y = wtexY0FRtexx1FSRtexY1.x; // Front/Side texture Y0 float rtex0x = rtexX0RtexY0StexX1.x; // Roof texture X0 float rtex0y = rtexX0RtexY0StexX1.y; // Roof texture Y0 float wtex1x = wtexY0FRtexx1FSRtexY1.y; // Front/Roof texture X1 float stex1x = rtexX0RtexY0StexX1.z; // Side texture X1 float wtex1y = wtexY0FRtexx1FSRtexY1.z; // Front/Roof/Side texture Y1 vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x), gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y); vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x, wtex1y); gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x; gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y; // Rotate the normal. ecNormal = gl_Normal; ecNormal.xy = vec2(dot(ecNormal.xy, vec2(cr, sr)), dot(ecNormal.xy, vec2(-sr, cr))); ecNormal = gl_NormalMatrix * ecNormal; gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0; gl_FrontColor = vec4(1.0, 1.0, 1.0, 1.0); gl_BackColor = vec4(1.0, 1.0, 1.0, 1.0); alpha = 1.0; }