Sea colour effect by Emilian Huminiuc
Signed-off-by: Vivian Meazza <vivian.meazza@lineone.net>
This commit is contained in:
parent
cad41c4eff
commit
af22245993
4 changed files with 542 additions and 418 deletions
|
@ -13,18 +13,32 @@ varying vec4 waterTex2;
|
|||
varying vec3 viewerdir;
|
||||
varying vec3 lightdir;
|
||||
varying vec3 normal;
|
||||
varying vec3 rawNormal;
|
||||
varying vec3 rawNormal;
|
||||
|
||||
varying vec3 VTangent;
|
||||
varying vec3 VBinormal;
|
||||
|
||||
uniform float osg_SimulationTime;
|
||||
varying vec3 WorldPos;
|
||||
varying vec2 TopoUV;
|
||||
|
||||
|
||||
uniform float WindE, WindN;
|
||||
uniform int rembrandt_enabled;
|
||||
|
||||
uniform float osg_SimulationTime;
|
||||
uniform mat4 osg_ViewMatrixInverse;
|
||||
|
||||
attribute vec3 tangent;
|
||||
attribute vec3 binormal;
|
||||
|
||||
// constants for the cartezian to geodetic conversion.
|
||||
|
||||
const float a = 6378137.0; //float a = equRad;
|
||||
const float squash = 0.9966471893352525192801545;
|
||||
const float latAdjust = 0.9999074159800018; //geotiff source for the depth map
|
||||
const float lonAdjust = 0.9999537058469516; //actual extents: +-180.008333333333326/+-90.008333333333340
|
||||
|
||||
|
||||
/////// functions /////////
|
||||
|
||||
void rotationmatrix(in float angle, out mat4 rotmat)
|
||||
|
@ -64,6 +78,46 @@ void main(void)
|
|||
rotationmatrix(Angle, RotationMatrix);
|
||||
waterTex2 = gl_MultiTexCoord0 * RotationMatrix - t2 * windFactor;
|
||||
|
||||
// fog_Func(fogType);
|
||||
WorldPos = (osg_ViewMatrixInverse *gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
|
||||
///FIXME: convert cartezian coordinates to geodetic, this
|
||||
///FIXME: duplicates parts of code in SGGeodesy.cxx
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
float e2 = abs(1.0 - squash * squash);
|
||||
float ra2 = 1.0/(a * a);
|
||||
float e4 = e2 * e2;
|
||||
float XXpYY = WorldPos.x * WorldPos.x + WorldPos.y * WorldPos.y;
|
||||
float Z = WorldPos.z;
|
||||
float sqrtXXpYY = sqrt(XXpYY);
|
||||
float p = XXpYY * ra2;
|
||||
float q = Z*Z*(1.0-e2)*ra2;
|
||||
float r = 1.0/6.0*(p + q - e4);
|
||||
float s = e4 * p * q/(4.0*r*r*r);
|
||||
if ( s >= 2.0 && s <= 0.0)
|
||||
s = 0.0;
|
||||
float t = pow(1.0+s+sqrt(s*2.0+s*s), 1.0/3.0);
|
||||
float u = r + r*t + r/t;
|
||||
float v = sqrt(u*u + e4*q);
|
||||
float w = (e2*u+ e2*v-e2*q)/(2.0*v);
|
||||
float k = sqrt(u+v+w*w)-w;
|
||||
float D = k*sqrtXXpYY/(k+e2);
|
||||
|
||||
vec2 NormPosXY = normalize(WorldPos.xy);
|
||||
vec2 NormPosXZ = normalize(vec2(D, WorldPos.z));
|
||||
float signS = sign(WorldPos.y);
|
||||
if (-0.00015 <= WorldPos.y && WorldPos.y<=.00015)
|
||||
signS = 1.0;
|
||||
float signT = sign(WorldPos.z);
|
||||
if (-0.0002 <= WorldPos.z && WorldPos.z<=.0002)
|
||||
signT = 1.0;
|
||||
float cosLon = dot(NormPosXY, vec2(1.0,0.0));
|
||||
float cosLat = dot(abs(NormPosXZ), vec2(1.0,0.0));
|
||||
TopoUV.s = signS * lonAdjust * degrees(acos(cosLon))/180.;
|
||||
TopoUV.t = signT * latAdjust * degrees(acos(cosLat))/90.;
|
||||
TopoUV.s = TopoUV.s * 0.5 + 0.5;
|
||||
TopoUV.t = TopoUV.t * 0.5 + 0.5;
|
||||
|
||||
//FIXME end/////////////////////////////////////////////////////////////////
|
||||
|
||||
gl_Position = ftransform();
|
||||
}
|
|
@ -14,9 +14,20 @@ varying vec3 viewerdir;
|
|||
varying vec3 lightdir;
|
||||
varying vec3 normal;
|
||||
|
||||
varying vec3 WorldPos;
|
||||
varying vec2 TopoUV;
|
||||
|
||||
uniform float osg_SimulationTime;
|
||||
uniform mat4 osg_ViewMatrixInverse;
|
||||
uniform float WindE, WindN;
|
||||
|
||||
// constants for the cartezian to geodetic conversion.
|
||||
|
||||
const float a = 6378137.0; //float a = equRad;
|
||||
const float squash = 0.9966471893352525192801545;
|
||||
const float latAdjust = 0.9999074159800018; //geotiff source for the depth map
|
||||
const float lonAdjust = 0.9999537058469516; //actual extents: +-180.008333333333326/+-90.008333333333340
|
||||
|
||||
/////// functions /////////
|
||||
|
||||
void rotationmatrix(in float angle, out mat4 rotmat)
|
||||
|
@ -54,5 +65,48 @@ void main(void)
|
|||
waterTex2 = gl_MultiTexCoord0 * RotationMatrix - t2 * windFactor;
|
||||
|
||||
// fog_Func(fogType);
|
||||
WorldPos = (osg_ViewMatrixInverse *gl_ModelViewMatrix * gl_Vertex).xyz;
|
||||
|
||||
|
||||
///FIXME: convert cartezian coordinates to geodetic, this
|
||||
///FIXME: duplicates parts of code in SGGeodesy.cxx
|
||||
////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
float e2 = abs(1.0 - squash * squash);
|
||||
float ra2 = 1.0/(a * a);
|
||||
float e4 = e2 * e2;
|
||||
float XXpYY = WorldPos.x * WorldPos.x + WorldPos.y * WorldPos.y;
|
||||
float Z = WorldPos.z;
|
||||
float sqrtXXpYY = sqrt(XXpYY);
|
||||
float p = XXpYY * ra2;
|
||||
float q = Z*Z*(1.0-e2)*ra2;
|
||||
float r = 1.0/6.0*(p + q - e4);
|
||||
float s = e4 * p * q/(4.0*r*r*r);
|
||||
if ( s >= 2.0 && s <= 0.0)
|
||||
s = 0.0;
|
||||
float t = pow(1.0+s+sqrt(s*2.0+s*s), 1.0/3.0);
|
||||
float u = r + r*t + r/t;
|
||||
float v = sqrt(u*u + e4*q);
|
||||
float w = (e2*u+ e2*v-e2*q)/(2.0*v);
|
||||
float k = sqrt(u+v+w*w)-w;
|
||||
float D = k*sqrtXXpYY/(k+e2);
|
||||
|
||||
vec2 NormPosXY = normalize(WorldPos.xy);
|
||||
vec2 NormPosXZ = normalize(vec2(D, WorldPos.z));
|
||||
float signS = sign(WorldPos.y);
|
||||
if (-0.00015 <= WorldPos.y && WorldPos.y<=.00015)
|
||||
signS = 1.0;
|
||||
float signT = sign(WorldPos.z);
|
||||
if (-0.0002 <= WorldPos.z && WorldPos.z<=.0002)
|
||||
signT = 1.0;
|
||||
float cosLon = dot(NormPosXY, vec2(1.0,0.0));
|
||||
float cosLat = dot(abs(NormPosXZ), vec2(1.0,0.0));
|
||||
TopoUV.s = signS * lonAdjust * degrees(acos(cosLon))/180.;
|
||||
TopoUV.t = signT * latAdjust * degrees(acos(cosLat))/90.;
|
||||
TopoUV.s = TopoUV.s * 0.5 + 0.5;
|
||||
TopoUV.t = TopoUV.t * 0.5 + 0.5;
|
||||
|
||||
//FIXME end/////////////////////////////////////////////////////////////////
|
||||
|
||||
gl_Position = ftransform();
|
||||
}
|
|
@ -1,12 +1,13 @@
|
|||
// This shader is mostly an adaptation of the shader found at
|
||||
// FRAGMENT SHADER
|
||||
// This shader is mostly an adaptation of the shader found at
|
||||
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
|
||||
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
|
||||
// Michael Horsch - 2005
|
||||
// ©Michael Horsch - 2005
|
||||
// Major update and revisions - 2011-10-07
|
||||
// Emilian Huminiuc and Vivian Meazza
|
||||
// ©Emilian Huminiuc and Vivian Meazza
|
||||
// Optimisation - 2012-5-05
|
||||
// Based on ideas by Thorsten Renk
|
||||
// Emilian Huminiuc and Vivian Meazza
|
||||
// ©Emilian Huminiuc and Vivian Meazza
|
||||
|
||||
#version 120
|
||||
|
||||
|
@ -17,6 +18,8 @@ uniform sampler2D water_reflection_grey ;
|
|||
uniform sampler2D sea_foam ;
|
||||
uniform sampler2D perlin_normalmap ;
|
||||
|
||||
uniform sampler2D topo_map;
|
||||
|
||||
uniform sampler3D Noise ;
|
||||
|
||||
|
||||
|
@ -43,6 +46,9 @@ uniform int Status ;
|
|||
varying vec4 waterTex1 ; //moving texcoords
|
||||
varying vec4 waterTex2 ; //moving texcoords
|
||||
|
||||
varying vec3 WorldPos ;
|
||||
varying vec2 TopoUV ;
|
||||
|
||||
varying vec3 viewerdir ;
|
||||
varying vec3 lightdir ;
|
||||
varying vec3 normal ;
|
||||
|
@ -51,6 +57,10 @@ varying vec3 VTangent ;
|
|||
varying vec3 VBinormal ;
|
||||
|
||||
const vec4 AllOnes = vec4(1.0);
|
||||
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) ;
|
||||
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) ;
|
||||
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) ;
|
||||
const float water_shininess = 240.0 ;
|
||||
|
||||
/////// functions /////////
|
||||
void encode_gbuffer(vec3 normal, vec3 color, int mId, float specular, float shininess, float emission, float depth);
|
||||
|
@ -59,9 +69,9 @@ void encode_gbuffer(vec3 normal, vec3 color, int mId, float specular, float shin
|
|||
void rotationmatrix(in float angle, out mat4 rotmat)
|
||||
{
|
||||
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
||||
sin( angle ), cos( angle ), 0.0, 0.0,
|
||||
0.0 , 0.0 , 1.0, 0.0,
|
||||
0.0 , 0.0 , 0.0, 1.0 );
|
||||
sin( angle ), cos( angle ), 0.0, 0.0,
|
||||
0.0 , 0.0 , 1.0, 0.0,
|
||||
0.0 , 0.0 , 0.0, 1.0 );
|
||||
}
|
||||
|
||||
// wave functions ///////////////////////
|
||||
|
@ -100,7 +110,7 @@ float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k)
|
|||
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1.0) * cos( dot(w.dir, pos)*w.freq + t*w.phase) ;
|
||||
}
|
||||
|
||||
void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy)
|
||||
void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, out float ddy)
|
||||
{
|
||||
mat4 RotationMatrix ;
|
||||
float deriv ;
|
||||
|
@ -132,9 +142,6 @@ void sumWaves(float angle, float dangle, float windScale, float factor, out floa
|
|||
|
||||
void main(void)
|
||||
{
|
||||
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005) ;
|
||||
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02) ;
|
||||
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25) ;
|
||||
|
||||
mat4 RotationMatrix ;
|
||||
|
||||
|
@ -148,22 +155,33 @@ void main(void)
|
|||
|
||||
vec3 Normal = normalize(normal) ;
|
||||
vec3 vNormal = normalize(rawNormal) ;
|
||||
const float water_shininess = 240.0 ;
|
||||
|
||||
// float range = gl_ProjectionMatrix[3].z/(gl_FragCoord.z * -2.0 + 1.0 - gl_ProjectionMatrix[2].z);
|
||||
|
||||
// approximate cloud cover
|
||||
float cover = 0.0 ;
|
||||
//bool Status = true;
|
||||
|
||||
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6 ; //wind speed in kt
|
||||
float windScale = 15.0/(3.0 + windEffect) ; //wave scale
|
||||
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect) ; //low windspeed wave filter
|
||||
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect) ; //wave roughness filter
|
||||
// Global bathymetry texture
|
||||
vec4 topoTexel = texture2D(topo_map, TopoUV);
|
||||
vec4 mixNoise = texture3D(Noise, WorldPos.xyz * 0.00005);
|
||||
vec4 mixNoise1 = texture3D(Noise, WorldPos.xyz * 0.00008);
|
||||
float mixNoiseFactor = mixNoise.r * mixNoise.g * mixNoise.b;
|
||||
float mixNoise1Factor = mixNoise1.r * mixNoise1.g * mixNoise1.b;
|
||||
mixNoiseFactor *= 300.0;
|
||||
mixNoise1Factor *= 300.0;
|
||||
mixNoiseFactor = 0.8 + 0.2 * smoothstep(0.0,1.0, mixNoiseFactor)* smoothstep(0.0,1.0, mixNoise1Factor);
|
||||
float floorMixFactor = smoothstep(0.3, 0.985, topoTexel.a * mixNoiseFactor);
|
||||
vec3 floorColour = mix(topoTexel.rgb, mixNoise.rgb * mixNoise1.rgb, 0.3);
|
||||
|
||||
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
|
||||
mixFactor = clamp(mixFactor, 0.3, 0.8);
|
||||
float windFloorFactor = 1.0 + 0.5 * smoothstep(0.8, 0.985, topoTexel.a);
|
||||
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
|
||||
float windFloorEffect = windEffect * windFloorFactor;
|
||||
float windScale = 15.0/(3.0 + windEffect); //wave scale
|
||||
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
|
||||
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
|
||||
|
||||
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windFloorEffect);
|
||||
mixFactor = clamp(mixFactor, 0.3, 0.95);
|
||||
// sine waves
|
||||
|
||||
// Test data
|
||||
|
@ -173,84 +191,79 @@ void main(void)
|
|||
|
||||
vec4 ddxVec = vec4(0.0) ;
|
||||
vec4 ddyVec = vec4(0.0) ;
|
||||
int detailFlag = 0 ;
|
||||
|
||||
//uncomment to test
|
||||
//range = -20000;
|
||||
float ddx = 0.0, ddy = 0.0 ;
|
||||
float ddx1 = 0.0, ddy1 = 0.0 ;
|
||||
float ddx2 = 0.0, ddy2 = 0.0 ;
|
||||
float ddx3 = 0.0, ddy3 = 0.0 ;
|
||||
float waveamp ;
|
||||
|
||||
// if (range > -15000 || dot(Normal,H) > 0.95 ) {
|
||||
float angle = 0.0 ;
|
||||
float WaveAmpFromDepth = WaveAmp * (1.0 + 0.5 * smoothstep(0.8, 0.9, topoTexel.a));
|
||||
float phaseFloorFactor = 1.0 - 0.2 * smoothstep(0.8, 0.9, topoTexel.a);
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = WaveAmpFromDepth ;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
wave0.phase *= phaseFloorFactor;
|
||||
|
||||
float ddx = 0.0, ddy = 0.0 ;
|
||||
float ddx1 = 0.0, ddy1 = 0.0 ;
|
||||
float ddx2 = 0.0, ddy2 = 0.0 ;
|
||||
float ddx3 = 0.0, ddy3 = 0.0 ;
|
||||
float waveamp ;
|
||||
angle -= 45.0 ;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = WaveAmpFromDepth * 1.25 ;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
wave1.phase *= phaseFloorFactor;
|
||||
|
||||
float angle = 0.0 ;
|
||||
angle += 30.0;
|
||||
wave2.freq = WaveFreq * 3.5 ;
|
||||
wave2.amp = WaveAmpFromDepth * 0.75 ;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
wave2.phase *= phaseFloorFactor;
|
||||
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = WaveAmp ;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
angle -= 50.0 ;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = WaveAmpFromDepth * 0.75 ;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
wave3.phase *= phaseFloorFactor;
|
||||
|
||||
angle -= 45.0 ;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = WaveAmp * 1.25 ;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
// sum waves
|
||||
|
||||
angle += 30.0;
|
||||
wave2.freq = WaveFreq * 3.5 ;
|
||||
wave2.amp = WaveAmp * 0.75 ;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
ddx = 0.0, ddy = 0.0 ;
|
||||
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy) ;
|
||||
|
||||
angle -= 50.0 ;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = WaveAmp * 0.75 ;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
ddx1 = 0.0, ddy1 = 0.0 ;
|
||||
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1) ;
|
||||
|
||||
// sum waves
|
||||
//reset the waves
|
||||
angle = 0.0 ;
|
||||
waveamp = WaveAmpFromDepth * 0.75 ;
|
||||
|
||||
ddx = 0.0, ddy = 0.0 ;
|
||||
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy) ;
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = waveamp ;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
|
||||
ddx1 = 0.0, ddy1 = 0.0 ;
|
||||
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1) ;
|
||||
angle -= 20.0 ;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = waveamp * 1.25 ;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
|
||||
//reset the waves
|
||||
angle = 0.0 ;
|
||||
waveamp = WaveAmp * 0.75 ;
|
||||
angle += 35.0 ;
|
||||
wave2.freq = WaveFreq * 3.5 ;
|
||||
wave2.amp = waveamp * 0.75 ;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = waveamp ;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
angle -= 45.0 ;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = waveamp * 0.75 ;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
|
||||
angle -= 20.0 ;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = waveamp * 1.25 ;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
// sum waves
|
||||
ddx2 = 0.0, ddy2 = 0.0 ;
|
||||
sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2) ;
|
||||
|
||||
angle += 35.0 ;
|
||||
wave2.freq = WaveFreq * 3.5 ;
|
||||
wave2.amp = waveamp * 0.75 ;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
ddx3 = 0.0, ddy3 = 0.0 ;
|
||||
sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3) ;
|
||||
|
||||
angle -= 45.0 ;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = waveamp * 0.75 ;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle))) ;
|
||||
|
||||
// sum waves
|
||||
ddx2 = 0.0, ddy2 = 0.0 ;
|
||||
sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2) ;
|
||||
|
||||
ddx3 = 0.0, ddy3 = 0.0 ;
|
||||
sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3) ;
|
||||
|
||||
ddxVec = vec4(ddx, ddx1, ddx2, ddx3) ;
|
||||
ddyVec = vec4(ddy, ddy1, ddy2, ddy3) ;
|
||||
|
||||
//toggle detailFlag
|
||||
//detailFlag = 1 ;
|
||||
// } // end sine stuff
|
||||
ddxVec = vec4(ddx, ddx1, ddx2, ddx3) ;
|
||||
ddyVec = vec4(ddy, ddy1, ddy2, ddy3) ;
|
||||
|
||||
float ddxSum = dot(ddxVec, AllOnes) ;
|
||||
float ddySum = dot(ddyVec, AllOnes) ;
|
||||
|
@ -266,119 +279,116 @@ void main(void)
|
|||
}
|
||||
}
|
||||
|
||||
// vec4 viewt = normalize(waterTex4);
|
||||
vec4 viewt = vec4(-E, 0.0) * 0.6 ;
|
||||
|
||||
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0 ;
|
||||
|
||||
vec2 uvAnimSca2 = (waterTex1 + disdis * sca2).st * windScale;
|
||||
//normalmaps
|
||||
vec4 nmap = texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0 ;
|
||||
vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0 ;
|
||||
vec4 nmap = texture2D(water_normalmap, uvAnimSca2) * 2.0 - 1.0;
|
||||
vec4 nmap1 = texture2D(perlin_normalmap, uvAnimSca2) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
|
||||
nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0 ;
|
||||
nmap1 += texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0 ;
|
||||
vec2 uvAnimTscale = (waterTex2 * RotationMatrix * tscale).st * windScale;
|
||||
|
||||
nmap *= windEffect_low ;
|
||||
nmap1 *= windEffect_low ;
|
||||
nmap += texture2D(water_normalmap, uvAnimTscale) * 2.0 - 1.0;
|
||||
nmap1 += texture2D(perlin_normalmap, uvAnimTscale) * 2.0 - 1.0;
|
||||
|
||||
// mix water and noise, modulated by factor
|
||||
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness) ;
|
||||
vNorm.r += ddxSum ;
|
||||
vNorm.y += ddySum ;
|
||||
|
||||
if (normalmap_dds > 0)//dds fix
|
||||
vNorm = -vNorm ;
|
||||
|
||||
//load reflection
|
||||
//vec4 tmp = vec4(lightdir, 0.0);
|
||||
vec4 tmp = vec4(0.0);
|
||||
vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ;
|
||||
vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ;
|
||||
vec4 refl ;
|
||||
//vec4 tmp = vec4(0.0);
|
||||
vec2 refTexUV = waterTex1.st * 32.0;
|
||||
vec4 refTex = texture2D(water_reflection, refTexUV) ;
|
||||
vec4 refTexGrey = texture2D(water_reflection_grey, refTexUV) ;
|
||||
vec4 refl = vec4(0.0,0.0,0.0,1.0) ;
|
||||
|
||||
// Test data
|
||||
// cover = 0;
|
||||
|
||||
if(cover >= 1.5){
|
||||
refl = normalize(refTex);
|
||||
refl.a = 1.0;
|
||||
refl.rgb = normalize(refTex).rgb;
|
||||
}
|
||||
else
|
||||
{
|
||||
refl = normalize(refTexGrey);
|
||||
refl.rgb = normalize(refTexGrey).rgb;
|
||||
refl.r *= (0.75 + 0.15 * cover);
|
||||
refl.g *= (0.80 + 0.15 * cover);
|
||||
refl.b *= (0.875 + 0.125 * cover);
|
||||
refl.a = 1.0;
|
||||
}
|
||||
|
||||
vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0);
|
||||
vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0);
|
||||
vec4 N0 = texture2D(water_normalmap, uvAnimSca2) * 2.0 - 1.0;
|
||||
vec4 N1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0;
|
||||
|
||||
N0 += texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0;
|
||||
N1 += texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0;
|
||||
|
||||
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0);
|
||||
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0);
|
||||
|
||||
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
|
||||
N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
|
||||
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
|
||||
vec2 uvAnimTscaleSca2 = (waterTex2 * RotationMatrix * (tscale + sca2)).st * windScale;
|
||||
N0 += texture2D(water_normalmap, uvAnimTscaleSca2) * 2.0 - 1.0;
|
||||
N1 += texture2D(perlin_normalmap, uvAnimTscaleSca2) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
|
||||
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0);
|
||||
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0);
|
||||
N0 += texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0;
|
||||
N1 += texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0;
|
||||
|
||||
// if(detailFlag > 0)
|
||||
// {
|
||||
N0 *= windEffect_low;
|
||||
N1 *= windEffect_low;
|
||||
N0.r += ddxSum;
|
||||
N0.g += ddySum;
|
||||
vec3 N2 = normalize(mix(N0, N1, mixFactor) * waveRoughness);
|
||||
Normal = normalize(N2.x * VTangent + N2.y * VBinormal + N2.z * Normal);
|
||||
//vNormal = normalize(mix(vNormal + N0, vNormal + N1, mixFactor) * waveRoughness);
|
||||
vNormal = normalize(N2.x * vec3(1.0, 0.0, 0.0) + N2.y * vec3(0.0, 1., 0.0) + N2.z * vNormal);
|
||||
if (normalmap_dds > 0){ //dds fix
|
||||
Normal = -Normal;
|
||||
vNormal = -vNormal;
|
||||
}
|
||||
// }
|
||||
N0 *= windEffect_low;
|
||||
N1 *= windEffect_low;
|
||||
|
||||
N0.r += ddxSum;
|
||||
N0.g += ddySum;
|
||||
vec3 N2 = normalize(mix(N0.rgb, N1.rgb, mixFactor) * waveRoughness);
|
||||
Normal = normalize(N2.x * VTangent + N2.y * VBinormal + N2.z * Normal);
|
||||
//vNormal = normalize(mix(vNormal + N0, vNormal + N1, mixFactor) * waveRoughness);
|
||||
vNormal = normalize(N2.x * vec3(1.0, 0.0, 0.0) + N2.y * vec3(0.0, 1., 0.0) + N2.z * vNormal);
|
||||
if (normalmap_dds > 0){ //dds fix
|
||||
Normal = -Normal;
|
||||
vNormal = -vNormal;
|
||||
}
|
||||
|
||||
|
||||
// specular
|
||||
// vec3 specular_color = vec3(1.0) * pow(max(0.0, dot(Normal, H)), water_shininess) * 6.0;
|
||||
// vec4 specular = vec4(specular_color, 0.5);
|
||||
//specular_color *= saturation * 0.3 ;
|
||||
//float specular = saturation * 0.3;
|
||||
// vec3 specular_color = vec3(1.0) * pow(max(0.0, dot(Normal, H)), water_shininess) * 6.0;
|
||||
// vec4 specular = vec4(specular_color, 0.5);
|
||||
// specular_color *= saturation * 0.3 ;
|
||||
// float specular = saturation * 0.3;
|
||||
|
||||
//calculate fresnel
|
||||
vec4 invfres = vec4( dot(vNorm, viewt) );
|
||||
float vNormDotViewT = dot(vNorm, viewt);
|
||||
vec4 invfres = vec4( vNormDotViewT );
|
||||
vec4 fres = vec4(1.0) + invfres;
|
||||
refl *= fres;
|
||||
|
||||
refl.rgb = mix(refl.rgb, floorColour, floorMixFactor);
|
||||
//calculate final colour
|
||||
vec4 finalColor = refl;
|
||||
|
||||
|
||||
//add foam
|
||||
vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0);
|
||||
vec4 foam_texel = texture2D(sea_foam, (waterTex2 * tscale).st * 50.0);
|
||||
float foamSlope = 0.1 + 0.1 * windScale;
|
||||
|
||||
// if (range > -10000.0){
|
||||
|
||||
float foamSlope = 0.1 + 0.1 * windScale;
|
||||
float waveSlope = vNormal.g;
|
||||
if (windEffect >= 8.0)
|
||||
if (waveSlope >= foamSlope){
|
||||
finalColor = mix( finalColor,
|
||||
max(finalColor, finalColor + foam_texel),
|
||||
smoothstep(0.01, 0.50, vNormal.g)
|
||||
);
|
||||
}
|
||||
|
||||
// } // end range
|
||||
float waveSlope1 = vNormal.g * windFloorFactor * 0.96 ; //0.6; Normals values seem to be .25 of those in the classic pipeline
|
||||
float waveSlope2 = vNorm.r * windFloorFactor * 0.4; //0.25;
|
||||
float waveSlope = waveSlope1 + waveSlope2 ;
|
||||
|
||||
finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel),
|
||||
smoothstep(7.0, 8.0, windFloorEffect)
|
||||
* step(foamSlope, waveSlope)
|
||||
* smoothstep(0.01, 0.50, waveSlope));
|
||||
|
||||
float emission = dot( gl_FrontLightModelProduct.sceneColor.rgb + gl_FrontMaterial.emission.rgb,
|
||||
vec3( 0.3, 0.59, 0.11 )
|
||||
);
|
||||
float specular = smoothstep(0.0, 3.5, cover);
|
||||
|
||||
encode_gbuffer(Normal, finalColor.rgb, 254, specular, water_shininess, emission, gl_FragCoord.z);
|
||||
}
|
||||
|
|
|
@ -1,43 +1,52 @@
|
|||
// This shader is mostly an adaptation of the shader found at
|
||||
// FRAGMENT SHADER
|
||||
// This shader is mostly an adaptation of the shader found at
|
||||
// http://www.bonzaisoftware.com/water_tut.html and its glsl conversion
|
||||
// available at http://forum.bonzaisoftware.com/viewthread.php?tid=10
|
||||
// © Michael Horsch - 2005
|
||||
// ©Michael Horsch - 2005
|
||||
// Major update and revisions - 2011-10-07
|
||||
// © Emilian Huminiuc and Vivian Meazza
|
||||
// ©Emilian Huminiuc and Vivian Meazza
|
||||
// Optimisation - 2012-5-05
|
||||
// Based on ideas by Thorsten Renk
|
||||
// © Emilian Huminiuc and Vivian Meazza
|
||||
// ©Emilian Huminiuc and Vivian Meazza
|
||||
|
||||
#version 120
|
||||
|
||||
uniform sampler2D water_normalmap;
|
||||
uniform sampler2D water_reflection;
|
||||
uniform sampler2D water_dudvmap;
|
||||
uniform sampler2D water_reflection_grey;
|
||||
uniform sampler2D sea_foam;
|
||||
uniform sampler2D perlin_normalmap;
|
||||
varying vec2 TopoUV;
|
||||
varying vec3 WorldPos;
|
||||
varying vec3 lightdir;
|
||||
varying vec3 normal;
|
||||
varying vec3 viewerdir;
|
||||
varying vec4 waterTex1; //moving texcoords
|
||||
varying vec4 waterTex2; //moving texcoords
|
||||
|
||||
uniform sampler3D Noise;
|
||||
uniform sampler2D perlin_normalmap;
|
||||
uniform sampler2D sea_foam;
|
||||
uniform sampler2D topo_map;
|
||||
uniform sampler2D water_dudvmap;
|
||||
uniform sampler2D water_normalmap;
|
||||
uniform sampler2D water_reflection;
|
||||
uniform sampler2D water_reflection_grey;
|
||||
uniform sampler3D Noise;
|
||||
|
||||
uniform float saturation, Overcast, WindE, WindN;
|
||||
uniform float CloudCover0, CloudCover1, CloudCover2, CloudCover3, CloudCover4;
|
||||
uniform float osg_SimulationTime;
|
||||
uniform int Status;
|
||||
uniform float CloudCover0;
|
||||
uniform float CloudCover1;
|
||||
uniform float CloudCover2;
|
||||
uniform float CloudCover3;
|
||||
uniform float CloudCover4;
|
||||
uniform float Overcast;
|
||||
uniform float WindE;
|
||||
uniform float WindN;
|
||||
uniform float osg_SimulationTime;
|
||||
uniform float saturation;
|
||||
uniform int Status;
|
||||
|
||||
varying vec4 waterTex1; //moving texcoords
|
||||
varying vec4 waterTex2; //moving texcoords
|
||||
|
||||
varying vec3 viewerdir;
|
||||
varying vec3 lightdir;
|
||||
varying vec3 normal;
|
||||
|
||||
uniform float WaveFreq ;
|
||||
uniform float WaveAmp ;
|
||||
uniform float WaveSharp ;
|
||||
uniform float WaveAngle ;
|
||||
uniform float WaveFactor ;
|
||||
uniform float WaveDAngle ;
|
||||
uniform float normalmap_dds;
|
||||
uniform float WaveAmp;
|
||||
uniform float WaveAngle;
|
||||
uniform float WaveDAngle;
|
||||
uniform float WaveFactor;
|
||||
uniform float WaveFreq;
|
||||
uniform float WaveSharp;
|
||||
uniform float normalmap_dds;
|
||||
|
||||
////fog "include" /////
|
||||
uniform int fogType;
|
||||
|
@ -46,25 +55,29 @@ vec3 fog_Func(vec3 color, int type);
|
|||
//////////////////////
|
||||
|
||||
const vec4 AllOnes = vec4(1.0);
|
||||
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
|
||||
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
|
||||
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
|
||||
const float water_shininess = 240.0;
|
||||
|
||||
/////// functions /////////
|
||||
|
||||
void rotationmatrix(in float angle, out mat4 rotmat)
|
||||
{
|
||||
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
||||
sin( angle ), cos( angle ), 0.0, 0.0,
|
||||
0.0 , 0.0 , 1.0, 0.0,
|
||||
0.0 , 0.0 , 0.0, 1.0 );
|
||||
}
|
||||
{
|
||||
rotmat = mat4( cos( angle ), -sin( angle ), 0.0, 0.0,
|
||||
sin( angle ), cos( angle ), 0.0, 0.0,
|
||||
0.0 , 0.0 , 1.0, 0.0,
|
||||
0.0 , 0.0 , 0.0, 1.0 );
|
||||
}
|
||||
|
||||
// wave functions ///////////////////////
|
||||
|
||||
struct Wave {
|
||||
float freq; // 2*PI / wavelength
|
||||
float amp; // amplitude
|
||||
float phase; // speed * 2*PI / wavelength
|
||||
vec2 dir;
|
||||
};
|
||||
float freq; // 2*PI / wavelength
|
||||
float amp; // amplitude
|
||||
float phase; // speed * 2*PI / wavelength
|
||||
vec2 dir;
|
||||
};
|
||||
|
||||
Wave wave0 = Wave(1.0, 1.0, 0.5, vec2(0.97, 0.25));
|
||||
Wave wave1 = Wave(2.0, 0.5, 1.3, vec2(0.97, -0.25));
|
||||
|
@ -72,314 +85,307 @@ Wave wave2 = Wave(1.0, 1.0, 0.6, vec2(0.95, -0.3));
|
|||
Wave wave3 = Wave(2.0, 0.5, 1.4, vec2(0.99, 0.1));
|
||||
|
||||
float evaluateWave(in Wave w, vec2 pos, float t)
|
||||
{
|
||||
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
|
||||
}
|
||||
{
|
||||
return w.amp * sin( dot(w.dir, pos) * w.freq + t * w.phase);
|
||||
}
|
||||
|
||||
// derivative of wave function
|
||||
float evaluateWaveDeriv(Wave w, vec2 pos, float t)
|
||||
{
|
||||
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
||||
}
|
||||
{
|
||||
return w.freq * w.amp * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
||||
}
|
||||
|
||||
// sharp wave functions
|
||||
float evaluateWaveSharp(Wave w, vec2 pos, float t, float k)
|
||||
{
|
||||
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
|
||||
}
|
||||
{
|
||||
return w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k);
|
||||
}
|
||||
|
||||
float evaluateWaveDerivSharp(Wave w, vec2 pos, float t, float k)
|
||||
{
|
||||
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1.0) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
||||
}
|
||||
{
|
||||
return k*w.freq*w.amp * pow(sin( dot(w.dir, pos)*w.freq + t*w.phase)* 0.5 + 0.5 , k - 1.0) * cos( dot(w.dir, pos)*w.freq + t*w.phase);
|
||||
}
|
||||
|
||||
void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, float ddy)
|
||||
{
|
||||
mat4 RotationMatrix;
|
||||
float deriv;
|
||||
vec4 P = waterTex1 * 1024.0;
|
||||
void sumWaves(float angle, float dangle, float windScale, float factor, out float ddx, out float ddy)
|
||||
{
|
||||
mat4 RotationMatrix;
|
||||
float deriv;
|
||||
vec4 P = waterTex1 * 1024.0;
|
||||
|
||||
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
|
||||
P *= RotationMatrix;
|
||||
rotationmatrix(radians(angle + dangle * windScale + 0.6 * sin(P.x * factor)), RotationMatrix);
|
||||
P *= RotationMatrix;
|
||||
|
||||
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
|
||||
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
|
||||
ddx = deriv * wave0.dir.x;
|
||||
ddy = deriv * wave0.dir.y;
|
||||
P.y += evaluateWave(wave0, P.xz, osg_SimulationTime);
|
||||
deriv = evaluateWaveDeriv(wave0, P.xz, osg_SimulationTime );
|
||||
ddx = deriv * wave0.dir.x;
|
||||
ddy = deriv * wave0.dir.y;
|
||||
|
||||
P.y += evaluateWave(wave1, P.xz, osg_SimulationTime);
|
||||
deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime);
|
||||
ddx += deriv * wave1.dir.x;
|
||||
ddy += deriv * wave1.dir.y;
|
||||
P.y += evaluateWave(wave1, P.xz, osg_SimulationTime);
|
||||
deriv = evaluateWaveDeriv(wave1, P.xz, osg_SimulationTime);
|
||||
ddx += deriv * wave1.dir.x;
|
||||
ddy += deriv * wave1.dir.y;
|
||||
|
||||
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
||||
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
||||
ddx += deriv * wave2.dir.x;
|
||||
ddy += deriv * wave2.dir.y;
|
||||
P.y += evaluateWaveSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
||||
deriv = evaluateWaveDerivSharp(wave2, P.xz, osg_SimulationTime, WaveSharp);
|
||||
ddx += deriv * wave2.dir.x;
|
||||
ddy += deriv * wave2.dir.y;
|
||||
|
||||
P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
|
||||
deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
|
||||
ddx += deriv * wave3.dir.x;
|
||||
ddy += deriv * wave3.dir.y;
|
||||
}
|
||||
P.y += evaluateWaveSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
|
||||
deriv = evaluateWaveDerivSharp(wave3, P.xz, osg_SimulationTime, WaveSharp);
|
||||
ddx += deriv * wave3.dir.x;
|
||||
ddy += deriv * wave3.dir.y;
|
||||
}
|
||||
|
||||
void main(void)
|
||||
{
|
||||
const vec4 sca = vec4(0.005, 0.005, 0.005, 0.005);
|
||||
const vec4 sca2 = vec4(0.02, 0.02, 0.02, 0.02);
|
||||
const vec4 tscale = vec4(0.25, 0.25, 0.25, 0.25);
|
||||
{
|
||||
mat4 RotationMatrix;
|
||||
|
||||
mat4 RotationMatrix;
|
||||
// compute direction to viewer
|
||||
vec3 E = normalize(viewerdir);
|
||||
|
||||
// compute direction to viewer
|
||||
vec3 E = normalize(viewerdir);
|
||||
// compute direction to light source
|
||||
vec3 L = normalize(lightdir);
|
||||
|
||||
// compute direction to light source
|
||||
vec3 L = normalize(lightdir);
|
||||
// half vector
|
||||
vec3 H = normalize(L + E);
|
||||
|
||||
// half vector
|
||||
vec3 H = normalize(L + E);
|
||||
vec3 Normal = normalize(normal);
|
||||
|
||||
vec3 Normal = normalize(normal);
|
||||
// approximate cloud cover
|
||||
float cover = 0.0;
|
||||
//bool Status = true;
|
||||
|
||||
const float water_shininess = 240.0;
|
||||
// try some aliasing fix for low angles
|
||||
// float viewAngle = smoothstep(0.0,0.5,abs(dot(E,Normal)));
|
||||
|
||||
float range = gl_ProjectionMatrix[3].z/(gl_FragCoord.z * -2.0 + 1.0 - gl_ProjectionMatrix[2].z);
|
||||
// Global bathymetry texture
|
||||
vec4 topoTexel = texture2D(topo_map, TopoUV);
|
||||
vec4 mixNoise = texture3D(Noise, WorldPos.xyz * 0.00005);
|
||||
vec4 mixNoise1 = texture3D(Noise, WorldPos.xyz * 0.00008);
|
||||
float mixNoiseFactor = mixNoise.r * mixNoise.g * mixNoise.b;
|
||||
float mixNoise1Factor = mixNoise1.r * mixNoise1.g * mixNoise1.b;
|
||||
mixNoiseFactor *= 300.0;
|
||||
mixNoise1Factor *= 300.0;
|
||||
mixNoiseFactor = 0.8 + 0.2 * smoothstep(0.0,1.0, mixNoiseFactor)* smoothstep(0.0,1.0, mixNoise1Factor);
|
||||
float floorMixFactor = smoothstep(0.3, 0.985, topoTexel.a * mixNoiseFactor);
|
||||
vec3 floorColour = mix(topoTexel.rgb, mixNoise.rgb * mixNoise1.rgb, 0.3);
|
||||
|
||||
// approximate cloud cover
|
||||
float cover = 0.0;
|
||||
//bool Status = true;
|
||||
float windFloorFactor = 1.0 + 0.5 * smoothstep(0.8, 0.985, topoTexel.a);
|
||||
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
|
||||
float windFloorEffect = windEffect * windFloorFactor;
|
||||
float windScale = 15.0/(3.0 + windEffect); //wave scale
|
||||
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
|
||||
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
|
||||
|
||||
float windEffect = sqrt( WindE*WindE + WindN*WindN ) * 0.6; //wind speed in kt
|
||||
float windScale = 15.0/(3.0 + windEffect); //wave scale
|
||||
float windEffect_low = 0.3 + 0.7 * smoothstep(0.0, 5.0, windEffect); //low windspeed wave filter
|
||||
float waveRoughness = 0.01 + smoothstep(0.0, 40.0, windEffect); //wave roughness filter
|
||||
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windFloorEffect);
|
||||
mixFactor = clamp(mixFactor, 0.3, 0.95);
|
||||
|
||||
float mixFactor = 0.2 + 0.02 * smoothstep(0.0, 50.0, windEffect);
|
||||
//mixFactor = 0.2;
|
||||
mixFactor = clamp(mixFactor, 0.3, 0.8);
|
||||
// sine waves
|
||||
//
|
||||
// Test data
|
||||
// float WaveFreq =1.0;
|
||||
// float WaveAmp = 1000.0;
|
||||
// float WaveSharp = 10.0;
|
||||
|
||||
// sine waves
|
||||
vec4 ddxVec = vec4(0.0);
|
||||
vec4 ddyVec = vec4(0.0);
|
||||
|
||||
// Test data
|
||||
//float WaveFreq =1.0;
|
||||
//float WaveAmp = 1000.0;
|
||||
//float WaveSharp = 10.0;
|
||||
float ddx = 0.0, ddy = 0.0;
|
||||
float ddx1 = 0.0, ddy1 = 0.0;
|
||||
float ddx2 = 0.0, ddy2 = 0.0;
|
||||
float ddx3 = 0.0, ddy3 = 0.0;
|
||||
float waveamp;
|
||||
|
||||
vec4 ddxVec = vec4(0.0);
|
||||
vec4 ddyVec = vec4(0.0);
|
||||
int detailFlag = 0;
|
||||
float angle = 0.0;
|
||||
float WaveAmpFromDepth = WaveAmp * windFloorFactor;
|
||||
float phaseFloorFactor = 1.0 - 0.2 * smoothstep(0.8, 0.9, topoTexel.a);
|
||||
wave0.freq = WaveFreq; // * (smoothstep(0.8, 0.9, topoTexel.a)*1.5 + 0.25);
|
||||
wave0.amp = WaveAmpFromDepth;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
wave0.phase *= phaseFloorFactor;
|
||||
|
||||
//uncomment to test
|
||||
//range = -20000;
|
||||
angle -= 45.0;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = WaveAmpFromDepth * 1.25;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
wave1.phase *= phaseFloorFactor;
|
||||
|
||||
if (range > -15000.0 || dot(Normal,H) > 0.95 ) {
|
||||
angle += 30.0;
|
||||
wave2.freq = WaveFreq * 3.5;
|
||||
wave2.amp = WaveAmpFromDepth * 0.75;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
wave2.phase *= phaseFloorFactor;
|
||||
|
||||
float ddx = 0.0, ddy = 0.0;
|
||||
float ddx1 = 0.0, ddy1 = 0.0;
|
||||
float ddx2 = 0.0, ddy2 = 0.0;
|
||||
float ddx3 = 0.0, ddy3 = 0.0;
|
||||
float waveamp;
|
||||
angle -= 50.0;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = WaveAmpFromDepth * 0.75;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
wave3.phase *= phaseFloorFactor;
|
||||
|
||||
float angle = 0.0;
|
||||
// sum waves
|
||||
ddx = 0.0, ddy = 0.0;
|
||||
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy);
|
||||
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = WaveAmp;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
ddx1 = 0.0, ddy1 = 0.0;
|
||||
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1);
|
||||
|
||||
angle -= 45.0;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = WaveAmp * 1.25;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
//reset the waves
|
||||
angle = 0.0;
|
||||
waveamp = WaveAmpFromDepth * 0.75;
|
||||
|
||||
angle += 30.0;
|
||||
wave2.freq = WaveFreq * 3.5;
|
||||
wave2.amp = WaveAmp * 0.75;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = waveamp;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
angle -= 50.0;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = WaveAmp * 0.75;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
angle -= 20.0;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = waveamp * 1.25;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
// sum waves
|
||||
angle += 35.0;
|
||||
wave2.freq = WaveFreq * 3.5;
|
||||
wave2.amp = waveamp * 0.75;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
ddx = 0.0, ddy = 0.0;
|
||||
sumWaves(WaveAngle, -1.5, windScale, WaveFactor, ddx, ddy);
|
||||
angle -= 45.0;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = waveamp * 0.75;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
|
||||
ddx1 = 0.0, ddy1 = 0.0;
|
||||
sumWaves(WaveAngle, 1.5, windScale, WaveFactor, ddx1, ddy1);
|
||||
// sum waves
|
||||
ddx2 = 0.0, ddy2 = 0.0;
|
||||
sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2);
|
||||
|
||||
//reset the waves
|
||||
angle = 0.0;
|
||||
waveamp = WaveAmp * 0.75;
|
||||
ddx3 = 0.0, ddy3 = 0.0;
|
||||
sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3);
|
||||
|
||||
wave0.freq = WaveFreq ;
|
||||
wave0.amp = waveamp;
|
||||
wave0.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
ddxVec = vec4(ddx, ddx1, ddx2, ddx3);
|
||||
ddyVec = vec4(ddy, ddy1, ddy2, ddy3);
|
||||
|
||||
angle -= 20.0;
|
||||
wave1.freq = WaveFreq * 2.0 ;
|
||||
wave1.amp = waveamp * 1.25;
|
||||
wave1.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
float ddxSum = dot(ddxVec, AllOnes);
|
||||
float ddySum = dot(ddyVec, AllOnes);
|
||||
|
||||
angle += 35.0;
|
||||
wave2.freq = WaveFreq * 3.5;
|
||||
wave2.amp = waveamp * 0.75;
|
||||
wave2.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
if (Status == 1){
|
||||
cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4);
|
||||
} else {
|
||||
// hack to allow for Overcast not to be set by Local Weather
|
||||
if (Overcast == 0.0){
|
||||
cover = 5.0;
|
||||
} else {
|
||||
cover = Overcast * 5.0;
|
||||
}
|
||||
}
|
||||
|
||||
angle -= 45.0;
|
||||
wave3.freq = WaveFreq * 3.0 ;
|
||||
wave3.amp = waveamp * 0.75;
|
||||
wave3.dir = vec2(cos(radians(angle)), sin(radians(angle)));
|
||||
vec4 viewt = vec4(-E, 0.0) * 0.6;
|
||||
|
||||
// sum waves
|
||||
ddx2 = 0.0, ddy2 = 0.0;
|
||||
sumWaves(WaveAngle + WaveDAngle, -1.5, windScale, WaveFactor, ddx2, ddy2);
|
||||
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0;
|
||||
|
||||
ddx3 = 0.0, ddy3 = 0.0;
|
||||
sumWaves(WaveAngle + WaveDAngle, 1.5, windScale, WaveFactor, ddx3, ddy3);
|
||||
vec2 uvAnimSca2 = (waterTex1 + disdis * sca2).st * windScale;
|
||||
//normalmaps
|
||||
vec4 nmap = texture2D(water_normalmap, uvAnimSca2) * 2.0 - 1.0;
|
||||
vec4 nmap1 = texture2D(perlin_normalmap, uvAnimSca2) * 2.0 - 1.0;
|
||||
|
||||
ddxVec = vec4(ddx, ddx1, ddx2, ddx3);
|
||||
ddyVec = vec4(ddy, ddy1, ddy2, ddy3);
|
||||
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
|
||||
vec2 uvAnimTscale = (waterTex2 * RotationMatrix * tscale).st * windScale;
|
||||
|
||||
//toggle detailFlag
|
||||
detailFlag = 1;
|
||||
} // end sine stuff
|
||||
nmap += texture2D(water_normalmap, uvAnimTscale) * 2.0 - 1.0;
|
||||
nmap1 += texture2D(perlin_normalmap, uvAnimTscale) * 2.0 - 1.0;
|
||||
|
||||
float ddxSum = dot(ddxVec, AllOnes);
|
||||
float ddySum = dot(ddyVec, AllOnes);
|
||||
nmap *= windEffect_low;
|
||||
nmap1 *= windEffect_low;
|
||||
|
||||
if (Status == 1){
|
||||
cover = min(min(min(min(CloudCover0, CloudCover1),CloudCover2),CloudCover3),CloudCover4);
|
||||
} else {
|
||||
// hack to allow for Overcast not to be set by Local Weather
|
||||
if (Overcast == 0){
|
||||
cover = 5;
|
||||
} else {
|
||||
cover = Overcast * 5;
|
||||
}
|
||||
}
|
||||
|
||||
// vec4 viewt = normalize(waterTex4);
|
||||
vec4 viewt = vec4(-E, 0.0) * 0.6;
|
||||
|
||||
vec4 disdis = texture2D(water_dudvmap, vec2(waterTex2 * tscale)* windScale) * 2.0 - 1.0;
|
||||
|
||||
//normalmaps
|
||||
vec4 nmap = texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0;
|
||||
vec4 nmap1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(3.0 * sin(osg_SimulationTime * 0.0075)), RotationMatrix);
|
||||
nmap += texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0;
|
||||
nmap1 += texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * tscale) * windScale) * 2.0 - 1.0;
|
||||
|
||||
nmap *= windEffect_low;
|
||||
nmap1 *= windEffect_low;
|
||||
|
||||
// mix water and noise, modulated by factor
|
||||
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
|
||||
vNorm.r += ddxSum;
|
||||
// mix water and noise, modulated by factor
|
||||
vec4 vNorm = normalize(mix(nmap, nmap1, mixFactor) * waveRoughness);
|
||||
vNorm.r += ddxSum;
|
||||
|
||||
if (normalmap_dds > 0)
|
||||
vNorm = -vNorm; //dds fix
|
||||
|
||||
//load reflection
|
||||
vec4 tmp = vec4(lightdir, 0.0);
|
||||
vec4 refTex = texture2D(water_reflection, vec2(tmp + waterTex1) * 32.0) ;
|
||||
vec4 refTexGrey = texture2D(water_reflection_grey, vec2(tmp + waterTex1) * 32.0) ;
|
||||
vec4 refl ;
|
||||
//load reflection
|
||||
vec4 tmp = vec4(lightdir, 0.0);
|
||||
vec2 refTexUV = (tmp + waterTex1).st * 32.0;
|
||||
vec4 refTex = texture2D(water_reflection, refTexUV) ;
|
||||
vec4 refTexGrey = texture2D(water_reflection_grey, refTexUV) ;
|
||||
vec4 refl = vec4(0.0,0.0,0.0,1.0) ;
|
||||
|
||||
// Test data
|
||||
// cover = 0;
|
||||
// Test data
|
||||
// cover = 0;
|
||||
|
||||
if(cover >= 1.5){
|
||||
refl = normalize(refTex);
|
||||
refl.a = 1.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
refl = normalize(refTexGrey);
|
||||
refl.r *= (0.75 + 0.15 * cover);
|
||||
refl.g *= (0.80 + 0.15 * cover);
|
||||
refl.b *= (0.875 + 0.125 * cover);
|
||||
refl.a = 1.0;
|
||||
}
|
||||
if(cover >= 1.5){
|
||||
refl.rgb = normalize(refTex).rgb;
|
||||
}
|
||||
else
|
||||
{
|
||||
refl.rgb = normalize(refTexGrey).rgb;
|
||||
refl.r *= (0.75 + 0.15 * cover );
|
||||
refl.g *= (0.80 + 0.15 * cover );
|
||||
refl.b *= (0.875 + 0.125 * cover);
|
||||
}
|
||||
|
||||
vec3 N0 = vec3(texture2D(water_normalmap, vec2(waterTex1 + disdis * sca2) * windScale) * 2.0 - 1.0);
|
||||
vec3 N1 = vec3(texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0);
|
||||
// refl.rgb = mix(refl.rgb, floorColour, 0.99 * floorMixFactor);
|
||||
|
||||
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0);
|
||||
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0);
|
||||
vec4 N0 = texture2D(water_normalmap, uvAnimSca2) * 2.0 - 1.0;
|
||||
vec4 N1 = texture2D(perlin_normalmap, vec2(waterTex1 + disdis * sca) * windScale) * 2.0 - 1.0;
|
||||
|
||||
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
|
||||
N0 += vec3(texture2D(water_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
|
||||
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex2 * RotationMatrix * (tscale + sca2)) * windScale) * 2.0 - 1.0);
|
||||
|
||||
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
|
||||
N0 += vec3(texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0);
|
||||
N1 += vec3(texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0);
|
||||
|
||||
if(detailFlag > 0)
|
||||
{
|
||||
N0 *= windEffect_low;
|
||||
N1 *= windEffect_low;
|
||||
//N0.r += (ddx + ddx1 + ddx2 + ddx3);
|
||||
//N0.g += (ddy + ddy1 + ddy2 + ddy3);
|
||||
|
||||
N0.r += ddxSum;
|
||||
N0.g += ddySum;
|
||||
|
||||
Normal = normalize(mix(Normal + N0, Normal + N1, mixFactor) * waveRoughness);
|
||||
|
||||
if (normalmap_dds > 0)
|
||||
Normal = -Normal; //dds fix
|
||||
}
|
||||
N0 += texture2D(water_normalmap, vec2(waterTex1 * tscale) * windScale) * 2.0 - 1.0;
|
||||
N1 += texture2D(perlin_normalmap, vec2(waterTex2 * tscale) * windScale) * 2.0 - 1.0;
|
||||
|
||||
|
||||
// specular
|
||||
vec3 specular_color = vec3(gl_LightSource[0].diffuse)
|
||||
* pow(max(0.0, dot(Normal, H)), water_shininess) * 6.0;
|
||||
vec4 specular = vec4(specular_color, 0.5);
|
||||
rotationmatrix(radians(2.0 * sin(osg_SimulationTime * 0.005)), RotationMatrix);
|
||||
vec2 uvAnimTscaleSca2 = (waterTex2 * RotationMatrix * (tscale + sca2)).st * windScale;
|
||||
N0 += texture2D(water_normalmap, uvAnimTscaleSca2) * 2.0 - 1.0;
|
||||
N1 += texture2D(perlin_normalmap, uvAnimTscaleSca2) * 2.0 - 1.0;
|
||||
|
||||
specular = specular * saturation * 0.3 ;
|
||||
rotationmatrix(radians(-4.0 * sin(osg_SimulationTime * 0.003)), RotationMatrix);
|
||||
N0 += texture2D(water_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca2) * windScale) * 2.0 - 1.0;
|
||||
N1 += texture2D(perlin_normalmap, vec2(waterTex1 * RotationMatrix + disdis * sca) * windScale) * 2.0 - 1.0;
|
||||
|
||||
//calculate fresnel
|
||||
vec4 invfres = vec4( dot(vNorm, viewt) );
|
||||
vec4 fres = vec4(1.0) + invfres;
|
||||
refl *= fres;
|
||||
N0 *= windEffect_low;
|
||||
N1 *= windEffect_low;
|
||||
|
||||
//calculate final colour
|
||||
vec4 ambient_light = gl_LightSource[0].diffuse;
|
||||
vec4 finalColor;
|
||||
N0.r += ddxSum;
|
||||
N0.g += ddySum;
|
||||
|
||||
if(cover >= 1.5){
|
||||
finalColor = refl + specular;
|
||||
} else {
|
||||
finalColor = refl;
|
||||
}
|
||||
Normal = normalize(mix(Normal + N0.rgb, Normal + N1.rgb, mixFactor) * waveRoughness);
|
||||
|
||||
//add foam
|
||||
vec4 foam_texel = texture2D(sea_foam, vec2(waterTex2 * tscale) * 25.0);
|
||||
if (range > -10000.0){
|
||||
if (normalmap_dds > 0)
|
||||
Normal = -Normal; //dds fix
|
||||
|
||||
float foamSlope = 0.1 + 0.1 * windScale;
|
||||
//float waveSlope = mix(N0.g, N1.g, 0.25);
|
||||
float waveSlope = Normal.g;
|
||||
float NdotH = max(0.0, dot(Normal, H));
|
||||
vec3 specular_color = vec3(gl_LightSource[0].diffuse)
|
||||
* pow(NdotH, water_shininess) * 6.0;
|
||||
vec4 specular = vec4(specular_color, 0.5);
|
||||
|
||||
if (windEffect >= 8.0)
|
||||
specular = specular * saturation * 0.3 ;
|
||||
|
||||
if (waveSlope >= foamSlope){
|
||||
finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel),
|
||||
smoothstep(0.01, 0.50, Normal.g));
|
||||
}
|
||||
//calculate fresnel
|
||||
float vNormDotViewT = dot(vNorm, viewt);
|
||||
vec4 invfres = vec4( vNormDotViewT);
|
||||
vec4 fres = vec4(1.0) + invfres;
|
||||
refl *= fres;
|
||||
|
||||
} // end range
|
||||
refl.rgb = mix(refl.rgb, floorColour, floorMixFactor);
|
||||
//calculate final colour
|
||||
vec4 ambient_light = gl_LightSource[0].diffuse;
|
||||
vec4 finalColor;
|
||||
|
||||
finalColor = refl + step(1.5, cover) * specular;
|
||||
|
||||
finalColor *= ambient_light;
|
||||
//add foam
|
||||
vec4 foam_texel = texture2D(sea_foam, (waterTex2 * tscale).st * 50.0);
|
||||
float foamSlope = 0.1 + 0.1 * windScale;
|
||||
|
||||
//gl_FragColor = mix(gl_Fog.color, finalColor, fogFactor);
|
||||
finalColor.rgb = fog_Func(finalColor.rgb, fogType);
|
||||
gl_FragColor = finalColor;
|
||||
}
|
||||
float waveSlope1 = Normal.g * windFloorFactor * 0.65;
|
||||
float waveSlope2 = vNorm.r * windFloorFactor * 0.3;
|
||||
float waveSlope = waveSlope1 + waveSlope2;
|
||||
|
||||
finalColor = mix(finalColor, max(finalColor, finalColor + foam_texel),
|
||||
smoothstep(7.0, 8.0, windFloorEffect)
|
||||
* step(foamSlope, waveSlope)
|
||||
* smoothstep(0.01, 0.50, waveSlope)) ;
|
||||
|
||||
finalColor *= ambient_light ;
|
||||
|
||||
finalColor.rgb = fog_Func(finalColor.rgb, fogType) ;
|
||||
gl_FragColor = finalColor ;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue