1
0
Fork 0

(Another) significant rework of the clustered shading feature

This commit is contained in:
Fernando García Liñán 2020-12-21 01:49:46 +01:00
parent 73d04548cd
commit a058bed4d5

View file

@ -1,18 +1,22 @@
#version 120
uniform sampler3D fg_Clusters;
uniform sampler2D fg_ClusteredIndices;
uniform sampler2D fg_ClusteredPointLights;
uniform sampler2D fg_ClusteredSpotLights;
uniform bool fg_ClusteredEnabled;
uniform int fg_ClusteredMaxPointLights;
uniform int fg_ClusteredMaxSpotLights;
uniform int fg_ClusteredMaxLightIndices;
uniform int fg_ClusteredTileSize;
uniform int fg_ClusteredDepthSlices;
uniform float fg_ClusteredSliceScale;
uniform float fg_ClusteredSliceBias;
uniform int fg_ClusteredHorizontalTiles;
uniform int fg_ClusteredVerticalTiles;
const int MAX_POINTLIGHTS = 1024;
const int MAX_SPOTLIGHTS = 1024;
const int MAX_LIGHT_GROUPS_PER_CLUSTER = 255;
const bool DEBUG = false;
struct PointLight {
vec4 position;
@ -37,7 +41,7 @@ struct SpotLight {
PointLight unpackPointLight(int index)
{
PointLight light;
float v = (float(index) + 0.5) / float(MAX_POINTLIGHTS);
float v = (float(index) + 0.5) / float(fg_ClusteredMaxPointLights);
light.position = texture2D(fg_ClusteredPointLights, vec2(0.1, v));
light.ambient = texture2D(fg_ClusteredPointLights, vec2(0.3, v));
light.diffuse = texture2D(fg_ClusteredPointLights, vec2(0.5, v));
@ -49,54 +53,64 @@ PointLight unpackPointLight(int index)
SpotLight unpackSpotLight(int index)
{
SpotLight light;
float v = (float(index) + 0.5) / float(MAX_SPOTLIGHTS);
float v = (float(index) + 0.5) / float(fg_ClusteredMaxSpotLights);
light.position = texture2D(fg_ClusteredSpotLights, vec2(0.0714, v));
light.direction = texture2D(fg_ClusteredSpotLights, vec2(0.2143, v));
light.ambient = texture2D(fg_ClusteredSpotLights, vec2(0.3571, v));
light.diffuse = texture2D(fg_ClusteredSpotLights, vec2(0.5, v));
light.specular = texture2D(fg_ClusteredSpotLights, vec2(0.6429, v));
light.attenuation = texture2D(fg_ClusteredSpotLights, vec2(0.7857, v));
vec2 reminder = texture2D(fg_ClusteredSpotLights, vec2(0.9286, v)).xy;
light.cos_cutoff = reminder.x;
light.exponent = reminder.y;
vec2 remainder = texture2D(fg_ClusteredSpotLights, vec2(0.9286, v)).xy;
light.cos_cutoff = remainder.x;
light.exponent = remainder.y;
return light;
}
int getIndex(int counter)
{
vec2 coords = vec2(mod(float(counter), float(fg_ClusteredMaxLightIndices)) + 0.5,
float(counter / fg_ClusteredMaxLightIndices) + 0.5);
// Normalize
coords /= vec2(fg_ClusteredMaxLightIndices);
return int(texture2D(fg_ClusteredIndices, coords).r);
}
// @param p Fragment position in view space.
// @param n Fragment normal in view space.
// @param texel The diffuse (or albedo) color of the surface. It's usually just
// the one on texture unit 0.
// @return The total color contribution of every light affecting the fragment.
// This result should be added to the fragment color before applying
// any haze, fog or post-processing.
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel)
{
int zSlice = int(max(log2(-p.z) * fg_ClusteredSliceScale
if (!fg_ClusteredEnabled)
return vec3(0.0);
int slice = int(max(log2(-p.z) * fg_ClusteredSliceScale
+ fg_ClusteredSliceBias, 0.0));
int ySlice = int(gl_FragCoord.y) / fg_ClusteredTileSize * zSlice;
int xSlice = int(gl_FragCoord.x) / fg_ClusteredTileSize;
vec3 clusterCoords = vec3(floor(gl_FragCoord.xy / fg_ClusteredTileSize),
slice) + vec3(0.5); // Pixel center
// Normalize
clusterCoords /= vec3(fg_ClusteredHorizontalTiles,
fg_ClusteredVerticalTiles,
fg_ClusteredDepthSlices);
vec2 clusterCoords = vec2(
(float(xSlice) + 0.5) / fg_ClusteredHorizontalTiles,
(float(ySlice) * float(zSlice) + 0.5) / fg_ClusteredVerticalTiles);
vec3 cluster = texture3D(fg_Clusters, clusterCoords).rgb;
int lightIndex = int(cluster.r);
int pointCount = int(cluster.g);
int spotCount = int(cluster.b);
int pointCount = int(texture3D(fg_Clusters, vec3(clusterCoords, 0.0)).r);
int spotCount = int(texture3D(fg_Clusters, vec3(clusterCoords, 0.0)).g);
int lightGroupCount = int(ceil(float(pointCount + spotCount) / 4.0));
if (DEBUG) {
vec2 margin = step(1.0, mod(gl_FragCoord.xy, vec2(fg_ClusteredTileSize)));
return mix(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0),
float(pointCount) / 5.0) * margin.x * margin.y;
}
vec3 color = vec3(0.0);
for (int i = 0; i < lightGroupCount; ++i) {
float r = (float(i + 1) + 0.5) / float(MAX_LIGHT_GROUPS_PER_CLUSTER + 1);
vec4 packedIndices = texture3D(fg_Clusters, vec3(clusterCoords, r));
for (int j = 0; j < 4; ++j) {
int index;
if (j == 0) index = int(packedIndices.x);
else if (j == 1) index = int(packedIndices.y);
else if (j == 2) index = int(packedIndices.z);
else if (j == 3) index = int(packedIndices.w);
else break;
int currentLight = i * 4 + j;
if (currentLight < pointCount) {
// This is a point light
for (int i = 0; i < pointCount; ++i) {
int index = getIndex(lightIndex++);
PointLight light = unpackPointLight(index);
float range = light.attenuation.w;
@ -125,8 +139,10 @@ vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel)
}
color += ((Iamb + Idiff) * texel + Ispec) * att;
} else if (currentLight < (pointCount + spotCount)) {
// This is a spot light
}
for (int i = 0; i < spotCount; ++i) {
int index = getIndex(lightIndex++);
SpotLight light = unpackSpotLight(index);
vec3 toLight = light.position.xyz - p;
@ -159,85 +175,7 @@ vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel)
}
color += ((Iamb + Idiff) * texel + Ispec) * att;
} else {
break;
}
}
}
return clamp(color, 0.0, 1.0);
// for (int i = 0; i < pointCount; ++i) {
// vec3 lightCoords = clusterCoords;
// int pointCount = int(texture2D(fg_Clusters, clusterCoords).r);
// PointLight light = pointLights[lightListIndex];
// float range = light.attenuation.w;
// vec3 toLight = light.position.xyz - p;
// // Ignore fragments outside the light volume
// if (dot(toLight, toLight) > (range * range))
// continue;
// ////////////////////////////////////////////////////////////////////////
// // Actual lighting
// float d = length(toLight);
// float att = 1.0 / (light.attenuation.x // constant
// + light.attenuation.y * d // linear
// + light.attenuation.z * d * d); // quadratic
// vec3 lightDir = normalize(toLight);
// float NdotL = max(dot(n, lightDir), 0.0);
// vec3 Iamb = light.ambient.rgb;
// vec3 Idiff = light.diffuse.rgb * NdotL;
// vec3 Ispec = vec3(0.0);
// if (NdotL > 0.0) {
// vec3 halfVector = normalize(lightDir + normalize(-p));
// float NdotHV = max(dot(n, halfVector), 0.0);
// Ispec = light.specular.rgb * att * pow(NdotHV, shininess);
// }
// color += addColors(color, (Iamb + Idiff + Ispec) * att);
// }
// for (uint i = uint(0); i < spotCount; ++i) {
// uint lightListIndex = texelFetch(fg_ClusteredLightIndices,
// int(startIndex + i)).r;
// SpotLight light = spotLights[lightListIndex];
// vec3 toLight = light.position.xyz - p;
// ////////////////////////////////////////////////////////////////////////
// // Actual lighting
// float d = length(toLight);
// float att = 1.0 / (light.attenuation.x // constant
// + light.attenuation.y * d // linear
// + light.attenuation.z * d * d); // quadratic
// vec3 lightDir = normalize(toLight);
// float spotDot = dot(-lightDir, light.direction.xyz);
// if (spotDot < light.cos_cutoff)
// continue;
// att *= pow(spotDot, light.exponent);
// float NdotL = max(dot(n, lightDir), 0.0);
// vec3 Iamb = light.ambient.rgb;
// vec3 Idiff = light.diffuse.rgb * NdotL;
// vec3 Ispec = vec3(0.0);
// if (NdotL > 0.0) {
// vec3 halfVector = normalize(lightDir + normalize(-p));
// float NdotHV = max(dot(n, halfVector), 0.0);
// Ispec = light.specular.rgb * att * pow(NdotHV, shininess);
// }
// color += (Iamb + Idiff + Ispec) * att;
// }
}