181 lines
6.2 KiB
GLSL
181 lines
6.2 KiB
GLSL
#version 120
|
|
|
|
uniform sampler3D fg_Clusters;
|
|
uniform sampler2D fg_ClusteredIndices;
|
|
uniform sampler2D fg_ClusteredPointLights;
|
|
uniform sampler2D fg_ClusteredSpotLights;
|
|
|
|
uniform bool fg_ClusteredEnabled;
|
|
uniform int fg_ClusteredMaxPointLights;
|
|
uniform int fg_ClusteredMaxSpotLights;
|
|
uniform int fg_ClusteredMaxLightIndices;
|
|
uniform int fg_ClusteredTileSize;
|
|
uniform int fg_ClusteredDepthSlices;
|
|
uniform float fg_ClusteredSliceScale;
|
|
uniform float fg_ClusteredSliceBias;
|
|
uniform int fg_ClusteredHorizontalTiles;
|
|
uniform int fg_ClusteredVerticalTiles;
|
|
|
|
const bool DEBUG = false;
|
|
|
|
struct PointLight {
|
|
vec4 position;
|
|
vec4 ambient;
|
|
vec4 diffuse;
|
|
vec4 specular;
|
|
vec4 attenuation;
|
|
};
|
|
|
|
struct SpotLight {
|
|
vec4 position;
|
|
vec4 direction;
|
|
vec4 ambient;
|
|
vec4 diffuse;
|
|
vec4 specular;
|
|
vec4 attenuation;
|
|
float cos_cutoff;
|
|
float exponent;
|
|
};
|
|
|
|
|
|
PointLight unpackPointLight(int index)
|
|
{
|
|
PointLight light;
|
|
float v = (float(index) + 0.5) / float(fg_ClusteredMaxPointLights);
|
|
light.position = texture2D(fg_ClusteredPointLights, vec2(0.1, v));
|
|
light.ambient = texture2D(fg_ClusteredPointLights, vec2(0.3, v));
|
|
light.diffuse = texture2D(fg_ClusteredPointLights, vec2(0.5, v));
|
|
light.specular = texture2D(fg_ClusteredPointLights, vec2(0.7, v));
|
|
light.attenuation = texture2D(fg_ClusteredPointLights, vec2(0.9, v));
|
|
return light;
|
|
}
|
|
|
|
SpotLight unpackSpotLight(int index)
|
|
{
|
|
SpotLight light;
|
|
float v = (float(index) + 0.5) / float(fg_ClusteredMaxSpotLights);
|
|
light.position = texture2D(fg_ClusteredSpotLights, vec2(0.0714, v));
|
|
light.direction = texture2D(fg_ClusteredSpotLights, vec2(0.2143, v));
|
|
light.ambient = texture2D(fg_ClusteredSpotLights, vec2(0.3571, v));
|
|
light.diffuse = texture2D(fg_ClusteredSpotLights, vec2(0.5, v));
|
|
light.specular = texture2D(fg_ClusteredSpotLights, vec2(0.6429, v));
|
|
light.attenuation = texture2D(fg_ClusteredSpotLights, vec2(0.7857, v));
|
|
vec2 remainder = texture2D(fg_ClusteredSpotLights, vec2(0.9286, v)).xy;
|
|
light.cos_cutoff = remainder.x;
|
|
light.exponent = remainder.y;
|
|
return light;
|
|
}
|
|
|
|
int getIndex(int counter)
|
|
{
|
|
vec2 coords = vec2(mod(float(counter), float(fg_ClusteredMaxLightIndices)) + 0.5,
|
|
float(counter / fg_ClusteredMaxLightIndices) + 0.5);
|
|
// Normalize
|
|
coords /= vec2(fg_ClusteredMaxLightIndices);
|
|
return int(texture2D(fg_ClusteredIndices, coords).r);
|
|
}
|
|
|
|
// @param p Fragment position in view space.
|
|
// @param n Fragment normal in view space.
|
|
// @param texel The diffuse (or albedo) color of the surface. It's usually just
|
|
// the one on texture unit 0.
|
|
// @return The total color contribution of every light affecting the fragment.
|
|
// This result should be added to the fragment color before applying
|
|
// any haze, fog or post-processing.
|
|
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel)
|
|
{
|
|
if (!fg_ClusteredEnabled)
|
|
return vec3(0.0);
|
|
|
|
int slice = int(max(log2(-p.z) * fg_ClusteredSliceScale
|
|
+ fg_ClusteredSliceBias, 0.0));
|
|
vec3 clusterCoords = vec3(floor(gl_FragCoord.xy / fg_ClusteredTileSize),
|
|
slice) + vec3(0.5); // Pixel center
|
|
// Normalize
|
|
clusterCoords /= vec3(fg_ClusteredHorizontalTiles,
|
|
fg_ClusteredVerticalTiles,
|
|
fg_ClusteredDepthSlices);
|
|
|
|
vec3 cluster = texture3D(fg_Clusters, clusterCoords).rgb;
|
|
int lightIndex = int(cluster.r);
|
|
int pointCount = int(cluster.g);
|
|
int spotCount = int(cluster.b);
|
|
|
|
if (DEBUG) {
|
|
vec2 margin = step(1.0, mod(gl_FragCoord.xy, vec2(fg_ClusteredTileSize)));
|
|
return mix(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0),
|
|
float(pointCount) / 5.0) * margin.x * margin.y;
|
|
}
|
|
|
|
vec3 color = vec3(0.0);
|
|
|
|
for (int i = 0; i < pointCount; ++i) {
|
|
int index = getIndex(lightIndex++);
|
|
PointLight light = unpackPointLight(index);
|
|
|
|
float range = light.attenuation.w;
|
|
vec3 toLight = light.position.xyz - p;
|
|
// Ignore fragments outside the light volume
|
|
if (dot(toLight, toLight) > (range * range))
|
|
continue;
|
|
|
|
float d = length(toLight);
|
|
float att = 1.0 / (light.attenuation.x // constant
|
|
+ light.attenuation.y * d // linear
|
|
+ light.attenuation.z * d * d); // quadratic
|
|
vec3 lightDir = normalize(toLight);
|
|
float NdotL = max(dot(n, lightDir), 0.0);
|
|
|
|
vec3 Iamb = light.ambient.rgb;
|
|
vec3 Idiff = gl_FrontMaterial.diffuse.rgb * light.diffuse.rgb * NdotL;
|
|
vec3 Ispec = vec3(0.0);
|
|
|
|
if (NdotL > 0.0) {
|
|
vec3 halfVector = normalize(lightDir + normalize(-p));
|
|
float NdotHV = max(dot(n, halfVector), 0.0);
|
|
Ispec = gl_FrontMaterial.specular.rgb
|
|
* light.specular.rgb
|
|
* pow(NdotHV, gl_FrontMaterial.shininess);
|
|
}
|
|
|
|
color += ((Iamb + Idiff) * texel + Ispec) * att;
|
|
}
|
|
|
|
for (int i = 0; i < spotCount; ++i) {
|
|
int index = getIndex(lightIndex++);
|
|
SpotLight light = unpackSpotLight(index);
|
|
|
|
vec3 toLight = light.position.xyz - p;
|
|
|
|
float d = length(toLight);
|
|
float att = 1.0 / (light.attenuation.x // constant
|
|
+ light.attenuation.y * d // linear
|
|
+ light.attenuation.z * d * d); // quadratic
|
|
|
|
vec3 lightDir = normalize(toLight);
|
|
|
|
float spotDot = dot(-lightDir, light.direction.xyz);
|
|
if (spotDot < light.cos_cutoff)
|
|
continue;
|
|
|
|
att *= pow(spotDot, light.exponent);
|
|
|
|
float NdotL = max(dot(n, lightDir), 0.0);
|
|
|
|
vec3 Iamb = light.ambient.rgb;
|
|
vec3 Idiff = gl_FrontMaterial.diffuse.rgb * light.diffuse.rgb * NdotL;
|
|
vec3 Ispec = vec3(0.0);
|
|
|
|
if (NdotL > 0.0) {
|
|
vec3 halfVector = normalize(lightDir + normalize(-p));
|
|
float NdotHV = max(dot(n, halfVector), 0.0);
|
|
Ispec = gl_FrontMaterial.specular.rgb
|
|
* light.specular.rgb
|
|
* pow(NdotHV, gl_FrontMaterial.shininess);
|
|
}
|
|
|
|
color += ((Iamb + Idiff) * texel + Ispec) * att;
|
|
}
|
|
|
|
return clamp(color, 0.0, 1.0);
|
|
}
|