1
0
Fork 0
fgdata/Shaders/clustered-include.frag
2020-12-22 10:53:31 +01:00

181 lines
6.2 KiB
GLSL

#version 120
uniform sampler3D fg_Clusters;
uniform sampler2D fg_ClusteredIndices;
uniform sampler2D fg_ClusteredPointLights;
uniform sampler2D fg_ClusteredSpotLights;
uniform bool fg_ClusteredEnabled;
uniform int fg_ClusteredMaxPointLights;
uniform int fg_ClusteredMaxSpotLights;
uniform int fg_ClusteredMaxLightIndices;
uniform int fg_ClusteredTileSize;
uniform int fg_ClusteredDepthSlices;
uniform float fg_ClusteredSliceScale;
uniform float fg_ClusteredSliceBias;
uniform int fg_ClusteredHorizontalTiles;
uniform int fg_ClusteredVerticalTiles;
const bool DEBUG = false;
struct PointLight {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 attenuation;
};
struct SpotLight {
vec4 position;
vec4 direction;
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 attenuation;
float cos_cutoff;
float exponent;
};
PointLight unpackPointLight(int index)
{
PointLight light;
float v = (float(index) + 0.5) / float(fg_ClusteredMaxPointLights);
light.position = texture2D(fg_ClusteredPointLights, vec2(0.1, v));
light.ambient = texture2D(fg_ClusteredPointLights, vec2(0.3, v));
light.diffuse = texture2D(fg_ClusteredPointLights, vec2(0.5, v));
light.specular = texture2D(fg_ClusteredPointLights, vec2(0.7, v));
light.attenuation = texture2D(fg_ClusteredPointLights, vec2(0.9, v));
return light;
}
SpotLight unpackSpotLight(int index)
{
SpotLight light;
float v = (float(index) + 0.5) / float(fg_ClusteredMaxSpotLights);
light.position = texture2D(fg_ClusteredSpotLights, vec2(0.0714, v));
light.direction = texture2D(fg_ClusteredSpotLights, vec2(0.2143, v));
light.ambient = texture2D(fg_ClusteredSpotLights, vec2(0.3571, v));
light.diffuse = texture2D(fg_ClusteredSpotLights, vec2(0.5, v));
light.specular = texture2D(fg_ClusteredSpotLights, vec2(0.6429, v));
light.attenuation = texture2D(fg_ClusteredSpotLights, vec2(0.7857, v));
vec2 remainder = texture2D(fg_ClusteredSpotLights, vec2(0.9286, v)).xy;
light.cos_cutoff = remainder.x;
light.exponent = remainder.y;
return light;
}
int getIndex(int counter)
{
vec2 coords = vec2(mod(float(counter), float(fg_ClusteredMaxLightIndices)) + 0.5,
float(counter / fg_ClusteredMaxLightIndices) + 0.5);
// Normalize
coords /= vec2(fg_ClusteredMaxLightIndices);
return int(texture2D(fg_ClusteredIndices, coords).r);
}
// @param p Fragment position in view space.
// @param n Fragment normal in view space.
// @param texel The diffuse (or albedo) color of the surface. It's usually just
// the one on texture unit 0.
// @return The total color contribution of every light affecting the fragment.
// This result should be added to the fragment color before applying
// any haze, fog or post-processing.
vec3 getClusteredLightsContribution(vec3 p, vec3 n, vec3 texel)
{
if (!fg_ClusteredEnabled)
return vec3(0.0);
int slice = int(max(log2(-p.z) * fg_ClusteredSliceScale
+ fg_ClusteredSliceBias, 0.0));
vec3 clusterCoords = vec3(floor(gl_FragCoord.xy / fg_ClusteredTileSize),
slice) + vec3(0.5); // Pixel center
// Normalize
clusterCoords /= vec3(fg_ClusteredHorizontalTiles,
fg_ClusteredVerticalTiles,
fg_ClusteredDepthSlices);
vec3 cluster = texture3D(fg_Clusters, clusterCoords).rgb;
int lightIndex = int(cluster.r);
int pointCount = int(cluster.g);
int spotCount = int(cluster.b);
if (DEBUG) {
vec2 margin = step(1.0, mod(gl_FragCoord.xy, vec2(fg_ClusteredTileSize)));
return mix(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0),
float(pointCount) / 5.0) * margin.x * margin.y;
}
vec3 color = vec3(0.0);
for (int i = 0; i < pointCount; ++i) {
int index = getIndex(lightIndex++);
PointLight light = unpackPointLight(index);
float range = light.attenuation.w;
vec3 toLight = light.position.xyz - p;
// Ignore fragments outside the light volume
if (dot(toLight, toLight) > (range * range))
continue;
float d = length(toLight);
float att = 1.0 / (light.attenuation.x // constant
+ light.attenuation.y * d // linear
+ light.attenuation.z * d * d); // quadratic
vec3 lightDir = normalize(toLight);
float NdotL = max(dot(n, lightDir), 0.0);
vec3 Iamb = light.ambient.rgb;
vec3 Idiff = gl_FrontMaterial.diffuse.rgb * light.diffuse.rgb * NdotL;
vec3 Ispec = vec3(0.0);
if (NdotL > 0.0) {
vec3 halfVector = normalize(lightDir + normalize(-p));
float NdotHV = max(dot(n, halfVector), 0.0);
Ispec = gl_FrontMaterial.specular.rgb
* light.specular.rgb
* pow(NdotHV, gl_FrontMaterial.shininess);
}
color += ((Iamb + Idiff) * texel + Ispec) * att;
}
for (int i = 0; i < spotCount; ++i) {
int index = getIndex(lightIndex++);
SpotLight light = unpackSpotLight(index);
vec3 toLight = light.position.xyz - p;
float d = length(toLight);
float att = 1.0 / (light.attenuation.x // constant
+ light.attenuation.y * d // linear
+ light.attenuation.z * d * d); // quadratic
vec3 lightDir = normalize(toLight);
float spotDot = dot(-lightDir, light.direction.xyz);
if (spotDot < light.cos_cutoff)
continue;
att *= pow(spotDot, light.exponent);
float NdotL = max(dot(n, lightDir), 0.0);
vec3 Iamb = light.ambient.rgb;
vec3 Idiff = gl_FrontMaterial.diffuse.rgb * light.diffuse.rgb * NdotL;
vec3 Ispec = vec3(0.0);
if (NdotL > 0.0) {
vec3 halfVector = normalize(lightDir + normalize(-p));
float NdotHV = max(dot(n, halfVector), 0.0);
Ispec = gl_FrontMaterial.specular.rgb
* light.specular.rgb
* pow(NdotHV, gl_FrontMaterial.shininess);
}
color += ((Iamb + Idiff) * texel + Ispec) * att;
}
return clamp(color, 0.0, 1.0);
}