2019-10-25 23:42:48 +00:00
|
|
|
// -*- mode: C; -*-
|
|
|
|
// RANDOM BUILDINGS for the UBERSHADER vertex shader
|
|
|
|
// Licence: GPL v2
|
|
|
|
// © Emilian Huminiuc and Vivian Meazza 2011
|
|
|
|
#version 120
|
|
|
|
#extension GL_EXT_draw_instanced : enable
|
|
|
|
|
|
|
|
varying vec4 diffuseColor;
|
|
|
|
varying vec3 VBinormal;
|
|
|
|
varying vec3 VNormal;
|
|
|
|
varying vec3 VTangent;
|
|
|
|
varying vec3 eyeVec;
|
|
|
|
varying vec3 normal;
|
|
|
|
|
|
|
|
uniform int refl_dynamic;
|
|
|
|
uniform int nmap_enabled;
|
|
|
|
uniform int shader_qual;
|
|
|
|
uniform int rembrandt_enabled;
|
|
|
|
|
|
|
|
attribute vec3 instancePosition; // (x,y,z)
|
2020-03-28 14:27:08 +00:00
|
|
|
attribute vec3 instanceScale; // (width, depth, height)
|
|
|
|
attribute vec3 attrib1; // Generic packed attributes
|
|
|
|
attribute vec3 attrib2;
|
|
|
|
|
|
|
|
const float c_precision = 128.0;
|
|
|
|
const float c_precisionp1 = c_precision + 1.0;
|
|
|
|
|
|
|
|
vec3 float2vec(float value) {
|
|
|
|
vec3 val;
|
|
|
|
val.x = mod(value, c_precisionp1) / c_precision;
|
|
|
|
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
|
|
|
|
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
|
|
|
|
return val;
|
|
|
|
}
|
2019-10-25 23:42:48 +00:00
|
|
|
|
|
|
|
void main(void)
|
|
|
|
{
|
2020-03-28 14:27:08 +00:00
|
|
|
// Unpack generic attributes
|
|
|
|
vec3 attr1 = float2vec(attrib1.x);
|
|
|
|
vec3 attr2 = float2vec(attrib1.z);
|
|
|
|
vec3 attr3 = float2vec(attrib2.x);
|
|
|
|
|
2019-10-25 23:42:48 +00:00
|
|
|
// Determine the rotation for the building.
|
2020-03-28 14:27:08 +00:00
|
|
|
float sr = sin(6.28 * attr1.x);
|
|
|
|
float cr = cos(6.28 * attr1.x);
|
2019-10-25 23:42:48 +00:00
|
|
|
|
|
|
|
vec3 position = gl_Vertex.xyz;
|
|
|
|
// Adjust the very top of the roof to match the rooftop scaling. This shapes
|
|
|
|
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
|
2020-03-28 14:27:08 +00:00
|
|
|
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * attr3.z - 0.5);
|
|
|
|
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * attrib2.y );
|
2019-10-25 23:42:48 +00:00
|
|
|
|
|
|
|
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
|
2020-03-28 14:27:08 +00:00
|
|
|
// Scale down by the building height (instanceScale.z) because
|
2019-10-25 23:42:48 +00:00
|
|
|
// immediately afterwards we will scale UP the vertex to the correct scale.
|
2020-03-28 14:27:08 +00:00
|
|
|
position.z = position.z + gl_Color.z * attrib1.y / instanceScale.z;
|
|
|
|
position = position * instanceScale.xyz;
|
2019-10-25 23:42:48 +00:00
|
|
|
|
|
|
|
// Rotation of the building and movement into position
|
|
|
|
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
|
|
|
|
position = position + instancePosition.xyz;
|
|
|
|
|
|
|
|
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
|
|
|
|
vec4 ecPosition = gl_ModelViewMatrix * vec4(position, 1.0);
|
|
|
|
|
|
|
|
eyeVec = ecPosition.xyz;
|
|
|
|
|
|
|
|
// Rotate the normal.
|
|
|
|
normal = gl_Normal;
|
|
|
|
|
|
|
|
// Rotate the normal as per the building.
|
|
|
|
normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr)));
|
|
|
|
vec3 n = normalize(normal);
|
|
|
|
|
|
|
|
vec3 c1 = cross(n, vec3(0.0,0.0,1.0));
|
|
|
|
vec3 c2 = cross(n, vec3(0.0,1.0,0.0));
|
|
|
|
VNormal = normalize(gl_NormalMatrix * normal);
|
|
|
|
|
|
|
|
VTangent = c1;
|
|
|
|
if(length(c2)>length(c1)){
|
|
|
|
VTangent = c2;
|
|
|
|
}
|
|
|
|
|
|
|
|
VBinormal = cross(n, VTangent);
|
|
|
|
|
|
|
|
VTangent = normalize(gl_NormalMatrix * -VTangent);
|
|
|
|
VBinormal = normalize(gl_NormalMatrix * VBinormal);
|
|
|
|
|
|
|
|
// Force no alpha on random buildings
|
|
|
|
diffuseColor = vec4(gl_FrontMaterial.diffuse.rgb,1.0);
|
|
|
|
|
|
|
|
if(rembrandt_enabled < 1){
|
|
|
|
gl_FrontColor = gl_FrontMaterial.emission + vec4(1.0)
|
|
|
|
* (gl_LightModel.ambient + gl_LightSource[0].ambient);
|
|
|
|
} else {
|
|
|
|
gl_FrontColor = vec4(1.0);
|
|
|
|
}
|
|
|
|
gl_ClipVertex = ecPosition;
|
|
|
|
|
|
|
|
// Texture coordinates are stored as:
|
2020-03-28 14:27:08 +00:00
|
|
|
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
|
|
|
|
// - a semi-shared (x1, y1) so that the front and side of the building can have
|
|
|
|
// different texture mappings
|
2019-10-25 23:42:48 +00:00
|
|
|
//
|
2020-03-28 14:27:08 +00:00
|
|
|
// The vertex color value selects between them:
|
|
|
|
// gl_Color.x=1 indicates front/back walls
|
|
|
|
// gl_Color.y=1 indicates roof
|
|
|
|
// gl_Color.z=1 indicates top roof vertexs (used above)
|
|
|
|
// gl_Color.a=1 indicates sides
|
|
|
|
// Finally, the roof texture is on the right of the texture sheet
|
|
|
|
float wtex0x = attr1.y; // Front/Side texture X0
|
|
|
|
float wtex0y = attr1.z; // Front/Side texture Y0
|
|
|
|
float rtex0x = attr2.z; // Roof texture X0
|
|
|
|
float rtex0y = attr3.x; // Roof texture Y0
|
|
|
|
float wtex1x = attr2.x; // Front/Roof texture X1
|
|
|
|
float stex1x = attr3.y; // Side texture X1
|
|
|
|
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
|
|
|
|
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
|
|
|
|
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
|
|
|
|
|
|
|
|
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
|
|
|
|
wtex1y);
|
|
|
|
|
|
|
|
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
|
|
|
|
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
|
2019-10-25 23:42:48 +00:00
|
|
|
}
|