1
0
Fork 0

Fix random buildings in Compositor

Update Compositor Effects and Shaders with latest random/osm2city
buildings implementation.
This commit is contained in:
Stuart Buchanan 2020-03-28 14:27:08 +00:00
parent fc27175690
commit 9e7afc7291
7 changed files with 804 additions and 936 deletions

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,311 @@
// -*-C++-*-
#version 120
#extension GL_EXT_draw_instanced : enable
// Shader that uses OpenGL state values to do per-pixel lighting
//
// The only light used is gl_LightSource[0], which is assumed to be
// directional.
//
// Diffuse colors come from the gl_Color, ambient from the material. This is
// equivalent to osg::Material::DIFFUSE.
// Haze part added by Thorsten Renk, Oct. 2011
#define MODE_OFF 0
#define MODE_DIFFUSE 1
#define MODE_AMBIENT_AND_DIFFUSE 2
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScale; // (width, depth, height)
attribute vec3 attrib1; // Generic packed attributes
attribute vec3 attrib2;
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
// component is set to 1 for front, 0 for back in order to work around
// bugs with gl_FrontFacing in the fragment shader.
varying vec4 diffuse_term;
varying vec3 normal;
varying vec3 relPos;
//varying float earthShade;
//varying float yprime;
//varying float vertex_alt;
varying float yprime_alt;
varying float mie_angle;
uniform int colorMode;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float terrain_alt;
uniform float avisibility;
uniform float visibility;
uniform float overcast;
//uniform float scattering;
uniform float ground_scattering;
uniform bool use_IR_vision;
// This is the value used in the skydome scattering shader - use the same here for consistency?
const float EarthRadius = 5800000.0;
const float terminator_width = 200000.0;
float earthShade;
//float mie_angle;
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
//x = x - 0.5;
// use the asymptotics to shorten computations
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
const float c_precision = 128.0;
const float c_precisionp1 = c_precision + 1.0;
vec3 float2vec(float value) {
vec3 val;
val.x = mod(value, c_precisionp1) / c_precision;
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
return val;
}
void main()
{
vec4 light_diffuse;
vec4 light_ambient;
float yprime;
float lightArg;
float intensity;
float vertex_alt;
float scattering;
vec3 shadedFogColor = vec3(0.55, 0.67, 0.88);
// Unpack generic attributes
vec3 attr1 = float2vec(attrib1.x);
vec3 attr2 = float2vec(attrib1.z);
vec3 attr3 = float2vec(attrib2.x);
// Determine the rotation for the building.
float sr = sin(6.28 * attr1.x);
float cr = cos(6.28 * attr1.x);
vec3 position = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * attr3.z - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * attrib2.y );
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScale.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
position.z = position.z + gl_Color.z * attrib1.y / instanceScale.z;
position = position * instanceScale.xyz;
// Rotation of the building and movement into position
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
position = position + instancePosition.xyz;
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
// Texture coordinates are stored as:
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = attr1.y; // Front/Side texture X0
float wtex0y = attr1.z; // Front/Side texture Y0
float rtex0x = attr2.z; // Roof texture X0
float rtex0y = attr3.x; // Roof texture Y0
float wtex1x = attr2.x; // Front/Roof texture X1
float stex1x = attr3.y; // Side texture X1
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
// Rotate the normal.
normal = gl_Normal;
normal.xy = vec2(dot(normal.xy, vec2(cr, sr)), dot(normal.xy, vec2(-sr, cr)));
normal = gl_NormalMatrix * normal;
vec4 ambient_color, diffuse_color;
if (colorMode == MODE_DIFFUSE) {
diffuse_color = vec4(1.0,1.0,1.0,1.0);
ambient_color = gl_FrontMaterial.ambient;
} else if (colorMode == MODE_AMBIENT_AND_DIFFUSE) {
diffuse_color = vec4(1.0,1.0,1.0,1.0);
ambient_color = vec4(1.0,1.0,1.0,1.0);
} else {
diffuse_color = gl_FrontMaterial.diffuse;
ambient_color = gl_FrontMaterial.ambient;
}
// here start computations for the haze layer
// we need several geometrical quantities
// first current altitude of eye position in model space
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
// and relative position to vector
relPos = gl_Vertex.xyz + gl_Color.xyz - ep.xyz;
// unfortunately, we need the distance in the vertex shader, although the more accurate version
// is later computed in the fragment shader again
float dist = length(relPos);
// altitude of the vertex in question, somehow zero leads to artefacts, so ensure it is at least 100m
vertex_alt = max(gl_Vertex.z + gl_Color.z,100.0);
scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(hazeLayerAltitude -100.0, hazeLayerAltitude + 100.0, vertex_alt);
// branch dependent on daytime
if (terminator < 1000000.0) // the full, sunrise and sunset computation
{
// establish coordinates relative to sun position
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0));
// yprime is the distance of the vertex into sun direction
yprime = -dot(relPos, lightHorizon);
// this gets an altitude correction, higher terrain gets to see the sun earlier
yprime_alt = yprime - sqrt(2.0 * EarthRadius * vertex_alt);
// two times terminator width governs how quickly light fades into shadow
// now the light-dimming factor
earthShade = 0.6 * (1.0 - smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt)) + 0.4;
// parametrized version of the Flightgear ground lighting function
lightArg = (terminator-yprime_alt)/100000.0;
// directional scattering for low sun
if (lightArg < 10.0)
{mie_angle = (0.5 * dot(normalize(relPos), normalize(lightFull)) ) + 0.5;}
else
{mie_angle = 1.0;}
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 3.827, 1.08e-05, 1.0);
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
light_diffuse.a = 1.0;
light_diffuse = light_diffuse * scattering;
light_ambient.r = light_func(lightArg, 0.236, 0.253, 1.073, 0.572, 0.33);
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
// correct ambient light intensity and hue before sunrise
if (earthShade < 0.5)
{
//light_ambient = light_ambient * (0.4 + 0.6 * smoothstep(0.2, 0.5, earthShade));
intensity = length(light_ambient.rgb);
light_ambient.rgb = intensity * normalize(mix(light_ambient.rgb, shadedFogColor, 1.0 -smoothstep(0.4, 0.8,earthShade) ));
intensity = length(light_diffuse.rgb);
light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.4, 0.7,earthShade) ));
}
// the haze gets the light at the altitude of the haze top if the vertex in view is below
// but the light at the vertex if the vertex is above
vertex_alt = max(vertex_alt,hazeLayerAltitude);
if (vertex_alt > hazeLayerAltitude)
{
if (dist > 0.8 * avisibility)
{
vertex_alt = mix(vertex_alt, hazeLayerAltitude, smoothstep(0.8*avisibility, avisibility, dist));
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else
{
vertex_alt = hazeLayerAltitude;
yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt);
}
}
else // the faster, full-day version without lightfields
{
//vertex_alt = max(gl_Vertex.z,100.0);
earthShade = 1.0;
mie_angle = 1.0;
if (terminator > 3000000.0)
{light_diffuse = vec4 (1.0, 1.0, 1.0, 1.0);
light_ambient = vec4 (0.33, 0.4, 0.5, 1.0); }
else
{
lightArg = (terminator/100000.0 - 10.0)/20.0;
light_diffuse.b = 0.78 + lightArg * 0.21;
light_diffuse.g = 0.907 + lightArg * 0.091;
light_diffuse.r = 0.904 + lightArg * 0.092;
light_diffuse.a = 1.0;
light_ambient.r = 0.316 + lightArg * 0.016;
light_ambient.g = light_ambient.r * 0.4/0.33;
light_ambient.b = light_ambient.r * 0.5/0.33;
light_ambient.a = 1.0;
}
light_diffuse = light_diffuse * scattering;
yprime_alt = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
if (use_IR_vision)
{
light_ambient.rgb = max(light_ambient.rgb, vec3 (0.5, 0.5, 0.5));
}
// default lighting based on texture and material using the light we have just computed
diffuse_term = diffuse_color* light_diffuse;
vec4 constant_term = gl_FrontMaterial.emission + ambient_color *
(gl_LightModel.ambient + light_ambient);
// Super hack: if diffuse material alpha is less than 1, assume a
// transparency animation is at work
if (gl_FrontMaterial.diffuse.a < 1.0)
diffuse_term.a = gl_FrontMaterial.diffuse.a;
else
diffuse_term.a = 1.0;
// Another hack for supporting two-sided lighting without using
// gl_FrontFacing in the fragment shader.
gl_FrontColor.rgb = constant_term.rgb;
gl_BackColor.rgb = constant_term.rgb;
//gl_FrontColor.a = mie_angle; gl_BackColor.a = mie_angle;
}

View file

@ -4,11 +4,9 @@
#version 120
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScaleRotate; // (width, depth, height)
attribute vec3 rotPitchWtex0x; // (rotation, pitch height, texture x offset)
attribute vec3 wtex0yTex1xTex1y; // (wall texture y offset, wall/roof texture x gain, wall/roof texture y gain)
attribute vec3 rtex0xRtex0y; // (roof texture y offset, roof texture x gain, texture y gain)
attribute vec3 rooftopscale; // (rooftop x scale, rooftop y scale)
attribute vec3 instanceScale ; // (width, depth, height)
attribute vec3 attrib1; // Generic packed attributes
attribute vec3 attrib2;
varying vec3 rawpos;
varying vec3 VNormal;
@ -53,24 +51,39 @@ void rotationMatrixH(in float sinRz, in float cosRz, out mat4 rotmat)
0.0 , 0.0 , 0.0, 1.0 );
}
const float c_precision = 128.0;
const float c_precisionp1 = c_precision + 1.0;
vec3 float2vec(float value) {
vec3 val;
val.x = mod(value, c_precisionp1) / c_precision;
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
return val;
}
void main(void)
{
// Determine the rotation for the building.
float sr = sin(6.28 * rotPitchWtex0x.x);
float cr = cos(6.28 * rotPitchWtex0x.x);
// Unpack generic attributes
vec3 attr1 = float2vec(attrib1.x);
vec3 attr2 = float2vec(attrib1.z);
vec3 attr3 = float2vec(attrib2.x);
// Determine the rotation for the building.
float sr = sin(6.28 * attr1.x);
float cr = cos(6.28 * attr1.x);
vec3 rawpos = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
rawpos.x = (1.0 - gl_Color.z) * rawpos.x + gl_Color.z * ((rawpos.x + 0.5) * rooftopscale.x - 0.5);
rawpos.y = (1.0 - gl_Color.z) * rawpos.y + gl_Color.z * (rawpos.y * rooftopscale.y);
rawpos.x = (1.0 - gl_Color.z) * rawpos.x + gl_Color.z * ((rawpos.x + 0.5) * attr3.z - 0.5);
rawpos.y = (1.0 - gl_Color.z) * rawpos.y + gl_Color.z * (rawpos.y * attrib2.y );
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScaleRotate.z) because
// Scale down by the building height (instanceScale.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
rawpos.z = rawpos.z + gl_Color.z * rotPitchWtex0x.y / instanceScaleRotate.z;
rawpos = rawpos * instanceScaleRotate.xyz;
rawpos.z = rawpos.z + gl_Color.z * attrib1.y / instanceScale.z;
rawpos = rawpos * instanceScale.xyz;
// Rotation of the building and movement into rawpos
rawpos.xy = vec2(dot(rawpos.xy, vec2(cr, sr)), dot(rawpos.xy, vec2(-sr, cr)));
@ -78,16 +91,31 @@ void main(void)
vec4 ecPosition = gl_ModelViewMatrix * vec4(rawpos, 1.0);
// Texture coordinates are stored as:
// - a separate offset for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a shared gain value (tex1x, tex1y)
//
// The vertex color value selects between them, with glColor.x=1 indicating walls
// and glColor.y=1 indicating roofs.
// Finally, the roof texture is on the left of the texture sheet
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*rotPitchWtex0x.z + gl_Color.y*rtex0xRtex0y.x),
gl_Color.x*wtex0yTex1xTex1y.x + gl_Color.y*rtex0xRtex0y.y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * wtex0yTex1xTex1y.y;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * wtex0yTex1xTex1y.z;
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = attr1.y; // Front/Side texture X0
float wtex0y = attr1.z; // Front/Side texture Y0
float rtex0x = attr2.z; // Roof texture X0
float rtex0y = attr3.x; // Roof texture Y0
float wtex1x = attr2.x; // Front/Roof texture X1
float stex1x = attr3.y; // Side texture X1
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
// Rotate the normal.
vec3 normal = gl_Normal;

View file

@ -1,63 +0,0 @@
// -*-C++-*-
// Ambient term comes in gl_Color.rgb.
#version 120
varying vec4 diffuse_term;
varying vec3 normal;
uniform sampler2D texture;
uniform sampler2D lightmap;
uniform float sunangle;
////fog "include" /////
uniform int fogType;
vec3 fog_Func(vec3 color, int type);
//////////////////////
float luminance(vec3 color)
{
return dot(vec3(0.212671, 0.715160, 0.072169), color);
}
void main()
{
vec3 n;
float NdotL, NdotHV, fogFactor;
vec4 color = gl_Color;
vec3 lightDir = gl_LightSource[0].position.xyz;
vec3 halfVector = gl_LightSource[0].halfVector.xyz;
vec4 texel;
vec4 emissive;
vec4 fragColor;
vec4 specular = vec4(0.0);
// If gl_Color.a == 0, this is a back-facing polygon and the
// normal should be reversed.
n = (2.0 * gl_Color.a - 1.0) * normal;
n = normalize(n);
NdotL = dot(n, lightDir);
if (NdotL > 0.0) {
color += diffuse_term * NdotL;
NdotHV = max(dot(n, halfVector), 0.0);
if (gl_FrontMaterial.shininess > 0.0)
specular.rgb = (gl_FrontMaterial.specular.rgb
* gl_LightSource[0].specular.rgb
* pow(NdotHV, gl_FrontMaterial.shininess));
}
color.a = diffuse_term.a;
// This shouldn't be necessary, but our lighting becomes very
// saturated. Clamping the color before modulating by the texture
// is closer to what the OpenGL fixed function pipeline does.
color = clamp(color, 0.0, 1.0);
texel = texture2D(texture, gl_TexCoord[0].st);
emissive = texture2D(lightmap, gl_TexCoord[0].st);
// The lights are only switched on when the sun is below the horizon
fragColor = color * texel + specular + smoothstep(1.6, 1.8, sunangle) * emissive;
fragColor.rgb = fog_Func(fragColor.rgb, fogType);
gl_FragColor = fragColor;
}

View file

@ -14,11 +14,9 @@
#define MODE_AMBIENT_AND_DIFFUSE 2
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScaleRotate; // (width, depth, height)
attribute vec3 rotPitchWtex0x; // (rotation, pitch height, wall texture x offset)
attribute vec3 wtex0yTex1xTex1y; // (wall texture y offset, wall/roof texture x gain, wall/roof texture y gain)
attribute vec3 rtex0xRtex0y; // (roof texture y offset, roof texture x gain, unused)
attribute vec3 rooftopscale; // (rooftop x scale, rooftop y scale)
attribute vec3 instanceScale ; // (width, depth, height)
attribute vec3 attrib1; // Generic packed attributes
attribute vec3 attrib2;
// The constant term of the lighting equation that doesn't depend on
// the surface normal is passed in gl_{Front,Back}Color. The alpha
@ -35,23 +33,39 @@ uniform int colorMode;
//void fog_Func(int type);
/////////////////////////
const float c_precision = 128.0;
const float c_precisionp1 = c_precision + 1.0;
vec3 float2vec(float value) {
vec3 val;
val.x = mod(value, c_precisionp1) / c_precision;
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
return val;
}
void main()
{
// Determine the rotation for the building.
float sr = sin(6.28 * rotPitchWtex0x.x);
float cr = cos(6.28 * rotPitchWtex0x.x);
// Unpack generic attributes
vec3 attr1 = float2vec(attrib1.x);
vec3 attr2 = float2vec(attrib1.z);
vec3 attr3 = float2vec(attrib2.x);
// Determine the rotation for the building.
float sr = sin(6.28 * attr1.x);
float cr = cos(6.28 * attr1.x);
vec3 position = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * rooftopscale.x - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * rooftopscale.y);
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * attr3.z - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * attrib2.y );
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScaleRotate.z) because
// Scale down by the building height (instanceScale.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
position.z = position.z + gl_Color.z * rotPitchWtex0x.y / instanceScaleRotate.z;
position = position * instanceScaleRotate.xyz;
position.z = position.z + gl_Color.z * attrib1.y / instanceScale.z;
position = position * instanceScale.xyz;
// Rotation of the building and movement into position
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
@ -60,20 +74,31 @@ void main()
gl_Position = gl_ModelViewProjectionMatrix * vec4(position,1.0);
// Texture coordinates are stored as:
// - a separate offset for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a shared gain value (tex1x, tex1y)
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them, with glColor.x=1 indicating walls
// and glColor.y=1 indicating roofs.
// Finally, the roof texture is on the left of the texture sheet
float wtex0x = rotPitchWtex0x.z;
float wtex0y = wtex0yTex1xTex1y.x;
float rtex0x = rtex0xRtex0y.x;
float rtex0y = rtex0xRtex0y.y;
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * wtex0yTex1xTex1y.y;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * wtex0yTex1xTex1y.z;
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = attr1.y; // Front/Side texture X0
float wtex0y = attr1.z; // Front/Side texture Y0
float rtex0x = attr2.z; // Roof texture X0
float rtex0y = attr3.x; // Roof texture Y0
float wtex1x = attr2.x; // Front/Roof texture X1
float stex1x = attr3.y; // Side texture X1
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
// Rotate the normal.
normal = gl_Normal;

View file

@ -18,29 +18,43 @@ uniform int shader_qual;
uniform int rembrandt_enabled;
attribute vec3 instancePosition; // (x,y,z)
attribute vec3 instanceScaleRotate; // (width, depth, height)
attribute vec3 rotPitchWtex0x; // (rotation, pitch height, texture x offset)
attribute vec3 wtex0yTex1xTex1y; // (wall texture y offset, wall/roof texture x gain, wall/roof texture y gain)
attribute vec3 rtex0xRtex0y; // (roof texture y offset, roof texture x gain, texture y gain)
attribute vec3 rooftopscale; // (rooftop x scale, rooftop y scale)
attribute vec3 instanceScale; // (width, depth, height)
attribute vec3 attrib1; // Generic packed attributes
attribute vec3 attrib2;
const float c_precision = 128.0;
const float c_precisionp1 = c_precision + 1.0;
vec3 float2vec(float value) {
vec3 val;
val.x = mod(value, c_precisionp1) / c_precision;
val.y = mod(floor(value / c_precisionp1), c_precisionp1) / c_precision;
val.z = floor(value / (c_precisionp1 * c_precisionp1)) / c_precision;
return val;
}
void main(void)
{
// Unpack generic attributes
vec3 attr1 = float2vec(attrib1.x);
vec3 attr2 = float2vec(attrib1.z);
vec3 attr3 = float2vec(attrib2.x);
// Determine the rotation for the building.
float sr = sin(6.28 * rotPitchWtex0x.x);
float cr = cos(6.28 * rotPitchWtex0x.x);
float sr = sin(6.28 * attr1.x);
float cr = cos(6.28 * attr1.x);
vec3 position = gl_Vertex.xyz;
// Adjust the very top of the roof to match the rooftop scaling. This shapes
// the rooftop - gambled, gabled etc. These vertices are identified by gl_Color.z
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * rooftopscale.x - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * rooftopscale.y);
position.x = (1.0 - gl_Color.z) * position.x + gl_Color.z * ((position.x + 0.5) * attr3.z - 0.5);
position.y = (1.0 - gl_Color.z) * position.y + gl_Color.z * (position.y * attrib2.y );
// Adjust pitch of roof to the correct height. These vertices are identified by gl_Color.z
// Scale down by the building height (instanceScaleRotate.z) because
// Scale down by the building height (instanceScale.z) because
// immediately afterwards we will scale UP the vertex to the correct scale.
position.z = position.z + gl_Color.z * rotPitchWtex0x.y / instanceScaleRotate.z;
position = position * instanceScaleRotate.xyz;
position.z = position.z + gl_Color.z * attrib1.y / instanceScale.z;
position = position * instanceScale.xyz;
// Rotation of the building and movement into position
position.xy = vec2(dot(position.xy, vec2(cr, sr)), dot(position.xy, vec2(-sr, cr)));
@ -84,14 +98,29 @@ void main(void)
gl_ClipVertex = ecPosition;
// Texture coordinates are stored as:
// - a separate offset for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a shared gain value (tex1x, tex1y)
// - a separate offset (x0, y0) for the wall (wtex0x, wtex0y), and roof (rtex0x, rtex0y)
// - a semi-shared (x1, y1) so that the front and side of the building can have
// different texture mappings
//
// The vertex color value selects between them, with glColor.x=1 indicating walls
// and glColor.y=1 indicating roofs.
// Finally, the roof texture is on the left of the texture sheet
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*rotPitchWtex0x.z + gl_Color.y*rtex0xRtex0y.x),
gl_Color.x*wtex0yTex1xTex1y.x + gl_Color.y*rtex0xRtex0y.y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * wtex0yTex1xTex1y.y;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * wtex0yTex1xTex1y.z;
// The vertex color value selects between them:
// gl_Color.x=1 indicates front/back walls
// gl_Color.y=1 indicates roof
// gl_Color.z=1 indicates top roof vertexs (used above)
// gl_Color.a=1 indicates sides
// Finally, the roof texture is on the right of the texture sheet
float wtex0x = attr1.y; // Front/Side texture X0
float wtex0y = attr1.z; // Front/Side texture Y0
float rtex0x = attr2.z; // Roof texture X0
float rtex0y = attr3.x; // Roof texture Y0
float wtex1x = attr2.x; // Front/Roof texture X1
float stex1x = attr3.y; // Side texture X1
float wtex1y = attr2.y; // Front/Roof/Side texture Y1
vec2 tex0 = vec2(sign(gl_MultiTexCoord0.x) * (gl_Color.x*wtex0x + gl_Color.y*rtex0x + gl_Color.a*wtex0x),
gl_Color.x*wtex0y + gl_Color.y*rtex0y + gl_Color.a*wtex0y);
vec2 tex1 = vec2(gl_Color.x*wtex1x + gl_Color.y*wtex1x + gl_Color.a*stex1x,
wtex1y);
gl_TexCoord[0].x = tex0.x + gl_MultiTexCoord0.x * tex1.x;
gl_TexCoord[0].y = tex0.y + gl_MultiTexCoord0.y * tex1.y;
}

View file

@ -384,10 +384,11 @@ Model Hierarchy
There are a large number of techniques used by the models, with complex
inheritance. Here is a handy list of the techniques, what they are for, and
where the based technique is defined
where the base technique is defined
Non-Compositor
# Where Defined Summary
4 model-combined.xml ALS, quality>0, model>0
5 model-defaults.xml Base ALS
7 model-combined-deferred.xml Rembrandt, model>0
@ -395,3 +396,13 @@ where the based technique is defined
10 model-defaults.xml Base Rembrandt
11 model-defaults.xml Generic shaders, quality>0
13 model-defaults.xml Fallback - no predicate
Compositor
# Where Defined Summary
4 model-combined.xml ALS, quality>0, model>0
19 model-defaults.xml Base ALS
7 model-combined.xml quality>0, model>0
8 model-defaults.xml Generic shaders, quality>0
9 model-defaults.xml Fallback - no predicate