1
0
Fork 0
fgdata/Shaders/skydome.frag

257 lines
7.7 KiB
GLSL
Raw Normal View History

#version 120
// Atmospheric scattering shader for flightgear
// Written by Lauri Peltonen (Zan)
// Implementation of O'Neil's algorithm
2012-11-20 13:11:21 +00:00
// Ground haze layer added by Thorsten Renk
varying vec3 rayleigh;
varying vec3 mie;
varying vec3 eye;
varying vec3 hazeColor;
varying float ct;
varying float cphi;
varying float delta_z;
varying float alt;
2012-03-08 22:20:39 +00:00
varying float earthShade;
uniform float overcast;
uniform float saturation;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float cloud_self_shading;
uniform float horizon_roughness;
const float EarthRadius = 5800000.0;
2012-03-08 22:20:39 +00:00
float miePhase(in float cosTheta, in float g)
{
float g2 = g*g;
float a = 1.5 * (1.0 - g2);
float b = (2.0 + g2);
float c = 1.0 + cosTheta*cosTheta;
float d = pow(1.0 + g2 - 2.0 * g * cosTheta, 0.6667);
return (a*c) / (b*d);
}
float rayleighPhase(in float cosTheta)
{
//return 1.5 * (1.0 + cosTheta*cosTheta);
return 1.5 * (2.0 + 0.5*cosTheta*cosTheta);
}
float rand2D(in vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
float simple_interpolate(in float a, in float b, in float x)
{
return a + smoothstep(0.0,1.0,x) * (b-a);
}
float interpolatedNoise2D(in float x, in float y)
{
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float v1 = rand2D(vec2(integer_x, integer_y));
float v2 = rand2D(vec2(integer_x+1.0, integer_y));
float v3 = rand2D(vec2(integer_x, integer_y+1.0));
float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0));
float i1 = simple_interpolate(v1 , v2 , fractional_x);
float i2 = simple_interpolate(v3 , v4 , fractional_x);
return simple_interpolate(i1 , i2 , fractional_y);
}
float Noise2D(in vec2 coord, in float wavelength)
{
return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength);
}
void main()
{
2012-11-20 13:11:21 +00:00
vec3 shadedFogColor = vec3(0.65, 0.67, 0.78);
float cosTheta = dot(normalize(eye), gl_LightSource[0].position.xyz);
// position of the horizon line
float lAltitude = alt + delta_z;
float radiusEye = EarthRadius + alt;
float radiusLayer = EarthRadius + lAltitude;
float cthorizon;
float ctterrain;
if (radiusEye > radiusLayer) cthorizon = -sqrt(radiusEye * radiusEye - radiusLayer * radiusLayer)/radiusEye;
else cthorizon = sqrt(radiusLayer * radiusLayer - radiusEye * radiusEye)/radiusLayer;
ctterrain = -sqrt(radiusEye * radiusEye - EarthRadius * EarthRadius)/radiusEye;
2011-09-23 21:25:15 +00:00
vec3 color = rayleigh * rayleighPhase(cosTheta);
color += mie * miePhase(cosTheta, -0.8);
vec3 black = vec3(0.0,0.0,0.0);
float ovc = overcast;
float sat = 1.0 - ((1.0 - saturation) * 2.0);
if (sat < 0.3) sat = 0.3;
// float wscale = 1.732;
// an overexposure filter, the log() seems to be pretty expensive though
// if (color.x > 0.8) color.x = 0.8 + 0.8* log(color.x/0.8);
// if (color.y > 0.8) color.y = 0.8 + 0.8* log(color.y/0.8);
// if (color.z > 0.8) color.z = 0.8 + 0.8* log(color.z/0.8);
// a different exposure filter
//color.x = 1.0 - exp(-1.3 * color.x);
//color.y = 1.0 - exp(-1.3 * color.y);
//color.z = 1.0 - exp(-1.3 * color.z);
if (color.r > 0.58) color.r = 1.0 - exp(-1.5 * color.r);
if (color.g > 0.58) color.g = 1.0 - exp(-1.5 * color.g);
if (color.b > 0.58) color.b = 1.0 - exp(-1.5 * color.b);
// reduce the whiteout near the horizon generated by the single scattering approximation
//if (ct > cthorizon) color = mix(color, black ,smoothstep(0.2+cthorizon, -0.2+cthorizon, ct));
//else color = mix (color, black, smoothstep(0.2+cthorizon,-0.2+cthorizon, cthorizon));
// fog computations for a ground haze layer, extending from zero to lAltitude
float transmission;
float vAltitude;
float delta_zv;
float costheta = ct;
float vis = min(visibility, avisibility);
// hack - in an effect volume the visibility only may be reduced, so we take care here
//if (avisibility < visibility){vis = avisibility;}
if (delta_z > 0.0) // we're inside the layer
{
if (costheta>0.0 + ctterrain) // looking up, view ray intersecting upper layer edge
{
transmission = exp(-min((delta_z/max(costheta,0.1)),25000.0)/vis);
//transmission = 1.0;
vAltitude = min(vis * costheta, delta_z);
delta_zv = delta_z - vAltitude;
}
else // looking down, view range intersecting terrain (which may not be drawn)
{
transmission = exp(alt/vis/costheta);
vAltitude = min(-vis * costheta, alt);
delta_zv = delta_z + vAltitude;
}
}
else // we see the layer from above
{
if (costheta < 0.0 + cthorizon)
{
transmission = exp(-min(lAltitude/abs(costheta),25000.0)/vis);
transmission = transmission * exp(-alt/avisibility/abs(costheta));
transmission = 1.0 - (1.0 - transmission) * smoothstep(0+cthorizon, -0.02+cthorizon, costheta);
vAltitude = min(lAltitude, -vis * costheta);
delta_zv = vAltitude;
}
else
{
transmission = 1.0;
delta_zv = 0.0;
}
}
// combined intensity reduction by cloud shading and fog self-shading, corrected for Weber-Fechner perception law
//float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(avisibility, 1.5 * avisibility, -alt/costheta);
float eqColorFactor = 1.0 - 0.1 * delta_zv/vis - (1.0 - min(scattering,cloud_self_shading));
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
// postprocessing of haze color
vec3 hColor = hazeColor;
// high altitude desaturation
float intensity = length(hColor);
hColor = intensity * normalize (mix(hColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue
hColor.x = 0.83 * hColor.x;
hColor.y = 0.9 * hColor.y;
// further blueshift when in shadow, either cloud shadow, or self-shadow or Earth shadow, dependent on indirect
// light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hColor);
vec3 oColor = hColor;
oColor = intensity * normalize(mix(oColor, shadedFogColor, (smoothstep(0.1,1.0,ovc))));
color = ovc * mix(color, oColor * earthShade ,smoothstep(-0.1+ctterrain, 0.0+ctterrain, ct)) + (1-ovc) * color;
hColor = intensity * normalize(mix(hColor, 1.5 * shadedFogColor, 1.0 -smoothstep(0.25, fade_out,earthShade) ));
hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,eqColorFactor))));
//hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,cloud_self_shading)) ));
hColor = hColor * earthShade;
// accounting for overcast and saturation
color = sat * color + (1.0 - sat) * mix(color, black, smoothstep(0.4+cthorizon,0.2+cthorizon,ct));
// the terrain below the horizon gets drawn in one optical thickness
vec3 terrainHazeColor = eqColorFactor * hColor;
// determine a visibility-dependent angle for how smoothly the haze blends over the skydome
float hazeBlendAngle = max(0.01,1000.0/avisibility + 0.3 * (1.0 - smoothstep(5000.0, 30000.0, avisibility)));
float altFactor = smoothstep(-300.0, 0.0, delta_z);
float altFactor2 = 0.2 + 0.8 * smoothstep(-3000.0, 0.0, delta_z);
hazeBlendAngle = hazeBlendAngle + 0.1 * altFactor;
hazeBlendAngle = hazeBlendAngle + (1.0-horizon_roughness) * altFactor2 * 0.1 * Noise2D(vec2(0.0,cphi), 0.3);
color = mix(color, terrainHazeColor ,smoothstep(hazeBlendAngle + ctterrain, 0.0+ctterrain, ct));
// mix fog the skydome with the right amount of haze
color = transmission * color + (1.0-transmission) * eqColorFactor * hColor;
2012-03-08 22:20:39 +00:00
gl_FragColor = vec4(color, 1.0);
gl_FragDepth = 0.1;
2012-03-08 22:20:39 +00:00
}