1
0
Fork 0

Horizon blur and noise modulation model based on aloft visibility and weather variability for Atmospheric Light Scattering

This commit is contained in:
Thorsten Renk 2013-08-29 15:15:51 +03:00
parent f1bee8b5ab
commit bdd9520ca5
3 changed files with 348 additions and 315 deletions

View file

@ -4,16 +4,17 @@
<parameters>
<mie><use>/sim/rendering/mie</use></mie>
<rayleigh><use>/sim/rendering/rayleigh</use></rayleigh>
<density><use>/sim/rendering/dome-density</use></density>
<overcast><use>/rendering/scene/overcast</use></overcast>
<saturation><use>/rendering/scene/saturation</use></saturation>
<scattering><use>/rendering/scene/scattering</use></scattering>
<visibility><use>/environment/ground-visibility-m</use></visibility>
<avisibility><use>/environment/visibility-m</use></avisibility>
<lthickness><use>/environment/ground-haze-thickness-m</use></lthickness>
<terminator><use>/environment/terminator-relative-position-m</use></terminator>
<terrain_alt><use>/environment/mean-terrain-elevation-m</use></terrain_alt>
<density><use>/sim/rendering/dome-density</use></density>
<overcast><use>/rendering/scene/overcast</use></overcast>
<saturation><use>/rendering/scene/saturation</use></saturation>
<scattering><use>/rendering/scene/scattering</use></scattering>
<visibility><use>/environment/ground-visibility-m</use></visibility>
<avisibility><use>/environment/visibility-m</use></avisibility>
<lthickness><use>/environment/ground-haze-thickness-m</use></lthickness>
<terminator><use>/environment/terminator-relative-position-m</use></terminator>
<terrain_alt><use>/environment/mean-terrain-elevation-m</use></terrain_alt>
<cloud_self_shading><use>/environment/cloud-self-shading</use></cloud_self_shading>
<horizon_roughness><use>/local-weather/config/small-scale-persistence</use></horizon_roughness>
</parameters>
<technique n="8">
<predicate>
@ -56,52 +57,57 @@
<name>density</name>
<type>float</type>
<value><use>density</use></value>
</uniform>
</uniform>
<uniform>
<name>overcast</name>
<type>float</type>
<value><use>overcast</use></value>
</uniform>
</uniform>
<uniform>
<name>saturation</name>
<type>float</type>
<value><use>saturation</use></value>
</uniform>
</uniform>
<uniform>
<name>scattering</name>
<type>float</type>
<value><use>scattering</use></value>
</uniform>
</uniform>
<uniform>
<name>visibility</name>
<type>float</type>
<value><use>visibility</use></value>
</uniform>
</uniform>
<uniform>
<name>hazeLayerAltitude</name>
<type>float</type>
<value><use>lthickness</use></value>
</uniform>
</uniform>
<uniform>
<name>terminator</name>
<type>float</type>
<value><use>terminator</use></value>
</uniform>
</uniform>
<uniform>
<name>avisibility</name>
<type>float</type>
<value><use>avisibility</use></value>
</uniform>
</uniform>
<uniform>
<name>terrain_alt</name>
<type>float</type>
<value><use>terrain_alt</use></value>
</uniform>
</uniform>
<uniform>
<name>cloud_self_shading</name>
<type>float</type>
<value><use>cloud_self_shading</use></value>
</uniform>
<uniform>
<name>horizon_roughness</name>
<type>float</type>
<value><use>horizon_roughness</use></value>
</uniform>
</pass>
</technique>

View file

@ -2,27 +2,28 @@
// Atmospheric scattering shader for flightgear
// Written by Lauri Peltonen (Zan)
// Implementation of O'Neil's algorithm
// Implementation of O'Neil's algorithm
// Ground haze layer added by Thorsten Renk
varying vec3 rayleigh;
varying vec3 mie;
varying vec3 eye;
varying vec3 hazeColor;
varying float ct;
//varying float cosphi;
varying float delta_z;
varying float alt;
varying vec3 eye;
varying vec3 hazeColor;
varying float ct;
varying float cphi;
varying float delta_z;
varying float alt;
varying float earthShade;
uniform float overcast;
uniform float saturation;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float cloud_self_shading;
const float EarthRadius = 5800000.0;
uniform float overcast;
uniform float saturation;
uniform float visibility;
uniform float avisibility;
uniform float scattering;
uniform float cloud_self_shading;
uniform float horizon_roughness;
const float EarthRadius = 5800000.0;
float miePhase(in float cosTheta, in float g)
{
@ -41,172 +42,215 @@ float rayleighPhase(in float cosTheta)
return 1.5 * (2.0 + 0.5*cosTheta*cosTheta);
}
float rand2D(in vec2 co){
return fract(sin(dot(co.xy ,vec2(12.9898,78.233))) * 43758.5453);
}
float simple_interpolate(in float a, in float b, in float x)
{
return a + smoothstep(0.0,1.0,x) * (b-a);
}
float interpolatedNoise2D(in float x, in float y)
{
float integer_x = x - fract(x);
float fractional_x = x - integer_x;
float integer_y = y - fract(y);
float fractional_y = y - integer_y;
float v1 = rand2D(vec2(integer_x, integer_y));
float v2 = rand2D(vec2(integer_x+1.0, integer_y));
float v3 = rand2D(vec2(integer_x, integer_y+1.0));
float v4 = rand2D(vec2(integer_x+1.0, integer_y +1.0));
float i1 = simple_interpolate(v1 , v2 , fractional_x);
float i2 = simple_interpolate(v3 , v4 , fractional_x);
return simple_interpolate(i1 , i2 , fractional_y);
}
float Noise2D(in vec2 coord, in float wavelength)
{
return interpolatedNoise2D(coord.x/wavelength, coord.y/wavelength);
}
void main()
{
{
vec3 shadedFogColor = vec3(0.65, 0.67, 0.78);
float cosTheta = dot(normalize(eye), gl_LightSource[0].position.xyz);
// position of the horizon line
float lAltitude = alt + delta_z;
float radiusEye = EarthRadius + alt;
float radiusLayer = EarthRadius + lAltitude;
float cthorizon;
float ctterrain;
if (radiusEye > radiusLayer) cthorizon = -sqrt(radiusEye * radiusEye - radiusLayer * radiusLayer)/radiusEye;
else cthorizon = sqrt(radiusLayer * radiusLayer - radiusEye * radiusEye)/radiusLayer;
ctterrain = -sqrt(radiusEye * radiusEye - EarthRadius * EarthRadius)/radiusEye;
// position of the horizon line
float lAltitude = alt + delta_z;
float radiusEye = EarthRadius + alt;
float radiusLayer = EarthRadius + lAltitude;
float cthorizon;
float ctterrain;
if (radiusEye > radiusLayer) cthorizon = -sqrt(radiusEye * radiusEye - radiusLayer * radiusLayer)/radiusEye;
else cthorizon = sqrt(radiusLayer * radiusLayer - radiusEye * radiusEye)/radiusLayer;
ctterrain = -sqrt(radiusEye * radiusEye - EarthRadius * EarthRadius)/radiusEye;
vec3 color = rayleigh * rayleighPhase(cosTheta);
color += mie * miePhase(cosTheta, -0.8);
vec3 black = vec3(0.0,0.0,0.0);
float ovc = overcast;
float sat = 1.0 - ((1.0 - saturation) * 2.0);
if (sat < 0.3) sat = 0.3;
// float wscale = 1.732;
// an overexposure filter, the log() seems to be pretty expensive though
// if (color.x > 0.8) color.x = 0.8 + 0.8* log(color.x/0.8);
// if (color.y > 0.8) color.y = 0.8 + 0.8* log(color.y/0.8);
// if (color.z > 0.8) color.z = 0.8 + 0.8* log(color.z/0.8);
// a different exposure filter
//color.x = 1.0 - exp(-1.3 * color.x);
//color.y = 1.0 - exp(-1.3 * color.y);
//color.z = 1.0 - exp(-1.3 * color.z);
if (color.r > 0.58) color.r = 1.0 - exp(-1.5 * color.r);
if (color.g > 0.58) color.g = 1.0 - exp(-1.5 * color.g);
if (color.b > 0.58) color.b = 1.0 - exp(-1.5 * color.b);
// reduce the whiteout near the horizon generated by the single scattering approximation
//if (ct > cthorizon) color = mix(color, black ,smoothstep(0.2+cthorizon, -0.2+cthorizon, ct));
//else color = mix (color, black, smoothstep(0.2+cthorizon,-0.2+cthorizon, cthorizon));
// fog computations for a ground haze layer, extending from zero to lAltitude
float transmission;
float vAltitude;
float delta_zv;
float costheta = ct;
float vis = min(visibility, avisibility);
// hack - in an effect volume the visibility only may be reduced, so we take care here
//if (avisibility < visibility){vis = avisibility;}
if (delta_z > 0.0) // we're inside the layer
{
if (costheta>0.0 + ctterrain) // looking up, view ray intersecting upper layer edge
{
transmission = exp(-min((delta_z/max(costheta,0.1)),25000.0)/vis);
//transmission = 1.0;
vAltitude = min(vis * costheta, delta_z);
delta_zv = delta_z - vAltitude;
}
else // looking down, view range intersecting terrain (which may not be drawn)
{
transmission = exp(alt/vis/costheta);
vAltitude = min(-vis * costheta, alt);
delta_zv = delta_z + vAltitude;
}
}
else // we see the layer from above
{
if (costheta < 0.0 + cthorizon)
{
transmission = exp(-min(lAltitude/abs(costheta),25000.0)/vis);
transmission = transmission * exp(-alt/avisibility/abs(costheta));
transmission = 1.0 - (1.0 - transmission) * smoothstep(0+cthorizon, -0.02+cthorizon, costheta);
vAltitude = min(lAltitude, -vis * costheta);
delta_zv = vAltitude;
}
else
{
transmission = 1.0;
delta_zv = 0.0;
}
}
// combined intensity reduction by cloud shading and fog self-shading, corrected for Weber-Fechner perception law
//float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(avisibility, 1.5 * avisibility, -alt/costheta);
float eqColorFactor = 1.0 - 0.1 * delta_zv/vis - (1.0 - min(scattering,cloud_self_shading));
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
// postprocessing of haze color
vec3 hColor = hazeColor;
// high altitude desaturation
float intensity = length(hColor);
hColor = intensity * normalize (mix(hColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue
hColor.x = 0.83 * hColor.x;
hColor.y = 0.9 * hColor.y;
// further blueshift when in shadow, either cloud shadow, or self-shadow or Earth shadow, dependent on indirect
// light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hColor);
vec3 oColor = hColor;
oColor = intensity * normalize(mix(oColor, shadedFogColor, (smoothstep(0.1,1.0,ovc))));
color = ovc * mix(color, oColor * earthShade ,smoothstep(-0.1+ctterrain, 0.0+ctterrain, ct)) + (1-ovc) * color;
hColor = intensity * normalize(mix(hColor, 1.5 * shadedFogColor, 1.0 -smoothstep(0.25, fade_out,earthShade) ));
hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,eqColorFactor))));
//hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,cloud_self_shading)) ));
hColor = hColor * earthShade;
// accounting for overcast and saturation
color = sat * color + (1.0 - sat) * mix(color, black, smoothstep(0.4+cthorizon,0.2+cthorizon,ct));
// the terrain below the horizon gets drawn in one optical thickness
vec3 terrainHazeColor = eqColorFactor * hColor;
color = mix(color, terrainHazeColor ,smoothstep(0.01 + ctterrain, 0.0+ctterrain, ct));
// mix fog the skydome with the right amount of haze
color = transmission * color + (1.0-transmission) * eqColorFactor * hColor;
vec3 black = vec3(0.0,0.0,0.0);
float ovc = overcast;
float sat = 1.0 - ((1.0 - saturation) * 2.0);
if (sat < 0.3) sat = 0.3;
// float wscale = 1.732;
// an overexposure filter, the log() seems to be pretty expensive though
// if (color.x > 0.8) color.x = 0.8 + 0.8* log(color.x/0.8);
// if (color.y > 0.8) color.y = 0.8 + 0.8* log(color.y/0.8);
// if (color.z > 0.8) color.z = 0.8 + 0.8* log(color.z/0.8);
// a different exposure filter
//color.x = 1.0 - exp(-1.3 * color.x);
//color.y = 1.0 - exp(-1.3 * color.y);
//color.z = 1.0 - exp(-1.3 * color.z);
if (color.r > 0.58) color.r = 1.0 - exp(-1.5 * color.r);
if (color.g > 0.58) color.g = 1.0 - exp(-1.5 * color.g);
if (color.b > 0.58) color.b = 1.0 - exp(-1.5 * color.b);
// reduce the whiteout near the horizon generated by the single scattering approximation
//if (ct > cthorizon) color = mix(color, black ,smoothstep(0.2+cthorizon, -0.2+cthorizon, ct));
//else color = mix (color, black, smoothstep(0.2+cthorizon,-0.2+cthorizon, cthorizon));
// fog computations for a ground haze layer, extending from zero to lAltitude
float transmission;
float vAltitude;
float delta_zv;
float costheta = ct;
float vis = min(visibility, avisibility);
// hack - in an effect volume the visibility only may be reduced, so we take care here
//if (avisibility < visibility){vis = avisibility;}
if (delta_z > 0.0) // we're inside the layer
{
if (costheta>0.0 + ctterrain) // looking up, view ray intersecting upper layer edge
{
transmission = exp(-min((delta_z/max(costheta,0.1)),25000.0)/vis);
//transmission = 1.0;
vAltitude = min(vis * costheta, delta_z);
delta_zv = delta_z - vAltitude;
}
else // looking down, view range intersecting terrain (which may not be drawn)
{
transmission = exp(alt/vis/costheta);
vAltitude = min(-vis * costheta, alt);
delta_zv = delta_z + vAltitude;
}
}
else // we see the layer from above
{
if (costheta < 0.0 + cthorizon)
{
transmission = exp(-min(lAltitude/abs(costheta),25000.0)/vis);
transmission = transmission * exp(-alt/avisibility/abs(costheta));
transmission = 1.0 - (1.0 - transmission) * smoothstep(0+cthorizon, -0.02+cthorizon, costheta);
vAltitude = min(lAltitude, -vis * costheta);
delta_zv = vAltitude;
}
else
{
transmission = 1.0;
delta_zv = 0.0;
}
}
// combined intensity reduction by cloud shading and fog self-shading, corrected for Weber-Fechner perception law
//float scattering = ground_scattering + (1.0 - ground_scattering) * smoothstep(avisibility, 1.5 * avisibility, -alt/costheta);
float eqColorFactor = 1.0 - 0.1 * delta_zv/vis - (1.0 - min(scattering,cloud_self_shading));
// there's always residual intensity, we should never be driven to zero
if (eqColorFactor < 0.2) eqColorFactor = 0.2;
// postprocessing of haze color
vec3 hColor = hazeColor;
// high altitude desaturation
float intensity = length(hColor);
hColor = intensity * normalize (mix(hColor, intensity * vec3 (1.0,1.0,1.0), 0.7* smoothstep(5000.0, 50000.0, alt)));
// blue hue
hColor.x = 0.83 * hColor.x;
hColor.y = 0.9 * hColor.y;
// further blueshift when in shadow, either cloud shadow, or self-shadow or Earth shadow, dependent on indirect
// light
float fade_out = max(0.65 - 0.3 *overcast, 0.45);
intensity = length(hColor);
vec3 oColor = hColor;
oColor = intensity * normalize(mix(oColor, shadedFogColor, (smoothstep(0.1,1.0,ovc))));
color = ovc * mix(color, oColor * earthShade ,smoothstep(-0.1+ctterrain, 0.0+ctterrain, ct)) + (1-ovc) * color;
hColor = intensity * normalize(mix(hColor, 1.5 * shadedFogColor, 1.0 -smoothstep(0.25, fade_out,earthShade) ));
hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,eqColorFactor))));
//hColor = intensity * normalize(mix(hColor, shadedFogColor, (1.0 - smoothstep(0.5,0.9,cloud_self_shading)) ));
hColor = hColor * earthShade;
// accounting for overcast and saturation
color = sat * color + (1.0 - sat) * mix(color, black, smoothstep(0.4+cthorizon,0.2+cthorizon,ct));
// the terrain below the horizon gets drawn in one optical thickness
vec3 terrainHazeColor = eqColorFactor * hColor;
// determine a visibility-dependent angle for how smoothly the haze blends over the skydome
float hazeBlendAngle = max(0.01,1000.0/avisibility + 0.3 * (1.0 - smoothstep(5000.0, 30000.0, avisibility)));
float altFactor = smoothstep(-300.0, 0.0, delta_z);
float altFactor2 = 0.2 + 0.8 * smoothstep(-3000.0, 0.0, delta_z);
hazeBlendAngle = hazeBlendAngle + 0.1 * altFactor;
hazeBlendAngle = hazeBlendAngle + (1.0-horizon_roughness) * altFactor2 * 0.1 * Noise2D(vec2(0.0,cphi), 0.3);
color = mix(color, terrainHazeColor ,smoothstep(hazeBlendAngle + ctterrain, 0.0+ctterrain, ct));
// mix fog the skydome with the right amount of haze
color = transmission * color + (1.0-transmission) * eqColorFactor * hColor;
gl_FragColor = vec4(color, 1.0);
gl_FragDepth = 0.1;
gl_FragDepth = 0.1;
}

View file

@ -6,29 +6,29 @@
uniform mat4 osg_ViewMatrix;
uniform mat4 osg_ViewMatrixInverse;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float avisibility;
uniform mat4 osg_ViewMatrixInverse;
uniform float hazeLayerAltitude;
uniform float terminator;
uniform float avisibility;
uniform float visibility;
uniform float terrain_alt;
uniform float terrain_alt;
varying vec3 rayleigh;
varying vec3 mie;
varying vec3 eye;
varying vec3 hazeColor;
varying float ct;
//varying float cosphi;
varying float delta_z;
varying float alt;
varying float earthShade;
varying vec3 eye;
varying vec3 hazeColor;
varying float ct;
varying float cphi;
varying float delta_z;
varying float alt;
varying float earthShade;
// Dome parameters from FG and screen
const float domeSize = 80000.0;
const float realDomeSize = 100000.0;
const float groundRadius = 0.984503332 * domeSize;
const float altitudeScale = domeSize - groundRadius;
const float EarthRadius = 5800000.0;
const float EarthRadius = 5800000.0;
// Dome parameters when calculating scattering
// Assuming dome size is 5.0
@ -43,25 +43,25 @@ const float fSamples = float(nSamples);
uniform float rK = 0.0003; //0.00015;
uniform float mK = 0.003; //0.0025;
uniform float density = 0.5; //1.0
//vec3 rayleighK = rK * vec3(5.602, 7.222, 19.644);
//vec3 rayleighK = rK * vec3(5.602, 7.222, 19.644);
vec3 rayleighK = rK * vec3(4.5, 8.62, 17.3);
vec3 mieK = vec3(mK);
vec3 sunIntensity = 10.0*vec3(120.0, 125.0, 130.0);
// light_func is a generalized logistic function fit to the light intensity as a function
// of scaled terminator position obtained from Flightgear core
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
x = x - 0.5;
// use the asymptotics to shorten computations
if (x > 30.0) {return e;}
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
// light_func is a generalized logistic function fit to the light intensity as a function
// of scaled terminator position obtained from Flightgear core
float light_func (in float x, in float a, in float b, in float c, in float d, in float e)
{
x = x - 0.5;
// use the asymptotics to shorten computations
if (x > 30.0) {return e;}
if (x < -15.0) {return 0.0;}
return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d));
}
// Find intersections of ray to skydome
// ray must be normalized
@ -76,8 +76,8 @@ float intersection (in float cheight, in vec3 ray, in float rad2)
// Return the scale function at height = 0 for different thetas
float outscatterscale(in float costheta)
{
{
float x = 1.0 - costheta;
@ -115,11 +115,11 @@ void main()
// Make it so that 0.0 is ground level and 1.0 is 100km (space) level
float altitude = distance(groundPoint, vec4(0.0, 0.0, 0.0, 1.0));
float scaledAltitude = altitude / realDomeSize;
// the local horizon angle
float radiusEye = EarthRadius + altitude;
float ctterrain = -sqrt(radiusEye * radiusEye - EarthRadius * EarthRadius)/radiusEye;
// the local horizon angle
float radiusEye = EarthRadius + altitude;
float ctterrain = -sqrt(radiusEye * radiusEye - EarthRadius * EarthRadius)/radiusEye;
// Camera's position, z is up!
float cameraRealAltitude = groundLevel + heightScale*scaledAltitude;
@ -133,7 +133,7 @@ void main()
// We are in space, calculate correct positiondelta!
relativePosition -= space * normalize(relativePosition);
}
vec3 positionDelta = relativePosition / fSamples;
float deltaLength = length(positionDelta); // Should multiply by something?
@ -147,20 +147,20 @@ void main()
// If sample is above camera, reverse ray direction
if(positionDelta.z < 0.0) cameraCosTheta = -positionDelta.z / deltaLength;
else cameraCosTheta = positionDelta.z / deltaLength;
float cameraCosTheta1 = -positionDelta.z / deltaLength;
float cameraCosTheta1 = -positionDelta.z / deltaLength;
// Total attenuation from camera to skydome
float totalCameraScatter = outscatter(cameraCosTheta, scaledAltitude);
// Do numerical integration of scattering function from skydome to camera
vec3 color = vec3(0.0);
// no scattering integrations where terrain is later drawn
if (cameraCosTheta1 > (ctterrain-0.05))
vec3 color = vec3(0.0);
// no scattering integrations where terrain is later drawn
if (cameraCosTheta1 > (ctterrain-0.05))
{
for(int i = 0; i < nSamples; i++)
{
@ -179,7 +179,7 @@ void main()
// Again, reverse the direction if vertex is over the camera
float cameraScatter;
if(relativePosition.z < 0.0) { // Vertex is over the camera
cameraCosTheta = -dot(normalize(positionDelta), normalize(sample));
cameraCosTheta = -dot(normalize(positionDelta), normalize(sample));
cameraScatter = totalCameraScatter - outscatter(cameraCosTheta, sampleAltitude);
} else { // Vertex is below camera
@ -196,13 +196,13 @@ void main()
sample += positionDelta;
}
}
color *= sunIntensity;
color *= sunIntensity;
ct = cameraCosTheta1;
rayleigh = rayleighK * color;
mie = mieK * color;
eye = gl_NormalMatrix * positionDelta;
// We need to move the camera so that the dome appears to be centered around earth
// to make the dome render correctly!
float moveDown = -altitude; // Center dome on camera
@ -210,82 +210,65 @@ void main()
moveDown += scaledAltitude * altitudeScale; // And move correctly according to altitude
// Vertex transformed correctly so that at 100km we are at space border
vec4 finalVertex = realVertex - vec4(0.0, 0.0, 1.0, 0.0) * moveDown;
// prepare some stuff for a ground haze layer
delta_z = hazeLayerAltitude - altitude;
alt = altitude;
// establish coordinates relative to sun position
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0) );
vec3 relVector = normalize(finalVertex.xyz - ep.xyz);
// and compute the twilight shading
// yprime is the coordinate from/towards terminator
float yprime;
if (alt > hazeLayerAltitude) // we're looking from above and can see far
{
if (ct < 0.0)
{
yprime = -dot(relVector,lightHorizon) * altitude/-ct;//(ct-0.001);
yprime = yprime -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
else // the only haze we see looking up is overcast, assume its altitude
{
yprime = -dot(relVector,lightHorizon) * avisibility;
yprime = yprime -sqrt(2.0 * EarthRadius * 10000.0);
}
}
else
{yprime = -dot(relVector,lightHorizon) * avisibility;
yprime = yprime -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
if (terminator > 1000000.0){yprime = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);}
//float edgeAlt = max(hazeLayerAltitude - (alt-terrain_alt)/avisibility * visibility, terrain_alt);
//yprime = yprime -sqrt(2.0 * EarthRadius * edgeAlt);
float terminator_width = 200000.0;
earthShade = 0.9 * smoothstep((terminator_width+ terminator), (-terminator_width + terminator), yprime) + 0.1;
//hazeColor = vec3 (gl_LightSource[0].diffuse.x, gl_LightSource[0].diffuse.y, gl_LightSource[0].diffuse.z);
//hazeColor.x = hazeColor.x * 0.83;
//hazeColor.y = hazeColor.y * 0.9;
float lightArg = (terminator-yprime)/100000.0;
vec4 light_diffuse;
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 2.527, 1.08e-05, 1.0);
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
light_diffuse.a = 0.0;
hazeColor = light_diffuse.xyz;
float intensity = length(hazeColor.xyz);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator -sqrt(2.0 * EarthRadius * terrain_alt));
float mie_angle = (0.5 * dot(normalize(relVector), normalize(lightFull)) ) + 0.5;
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
// high altitude desaturation - would be best here this causes a box-like bug for some reason
// so it moved to the fragment shader where it has no issues
//float intensity = length(hazeColor.xyz);
//hazeColor = intensity * normalize (mix(hazeColor, intensity * vec3 (1.0,1.0,1.0), 0.8* smoothstep(5000.0, 50000.0, alt)));
vec4 finalVertex = realVertex - vec4(0.0, 0.0, 1.0, 0.0) * moveDown;
// prepare some stuff for a ground haze layer
delta_z = hazeLayerAltitude - altitude;
alt = altitude;
// establish coordinates relative to sun position
vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0);
vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz;
vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0) );
vec3 relVector = normalize(finalVertex.xyz - ep.xyz);
// and compute the twilight shading
// yprime is the coordinate from/towards terminator
float yprime;
if (alt > hazeLayerAltitude) // we're looking from above and can see far
{
if (ct < 0.0)
{
yprime = -dot(relVector,lightHorizon) * altitude/-ct;//(ct-0.001);
yprime = yprime -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
else // the only haze we see looking up is overcast, assume its altitude
{
yprime = -dot(relVector,lightHorizon) * avisibility;
yprime = yprime -sqrt(2.0 * EarthRadius * 10000.0);
}
}
else
{yprime = -dot(relVector,lightHorizon) * avisibility;
yprime = yprime -sqrt(2.0 * EarthRadius * hazeLayerAltitude);
}
if (terminator > 1000000.0){yprime = -sqrt(2.0 * EarthRadius * hazeLayerAltitude);}
float terminator_width = 200000.0;
earthShade = 0.9 * smoothstep((terminator_width+ terminator), (-terminator_width + terminator), yprime) + 0.1;
float lightArg = (terminator-yprime)/100000.0;
vec4 light_diffuse;
light_diffuse.b = light_func(lightArg, 1.330e-05, 0.264, 2.527, 1.08e-05, 1.0);
light_diffuse.g = light_func(lightArg, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0);
light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0);
light_diffuse.a = 0.0;
hazeColor = light_diffuse.xyz;
float intensity = length(hazeColor.xyz);
float mie_magnitude = 0.5 * smoothstep(350000.0, 150000.0, terminator -sqrt(2.0 * EarthRadius * terrain_alt));
cphi = dot(normalize(relVector), normalize(lightHorizon));
float mie_angle = (0.5 * dot(normalize(relVector), normalize(lightFull)) ) + 0.5;
hazeColor = intensity * ((1.0 - mie_magnitude) + mie_magnitude * mie_angle) * normalize(mix(hazeColor, vec3 (0.5, 0.58, 0.65), mie_magnitude * (0.5 - 0.5 * mie_angle)) );
// Transform
gl_Position = gl_ModelViewProjectionMatrix * finalVertex;