1
0
Fork 0
fgdata/Compositor/Shaders/ALS/clustered-include.frag

134 lines
4 KiB
GLSL
Raw Normal View History

#version 140
uniform usampler3D fg_ClusteredLightGrid;
uniform usamplerBuffer fg_ClusteredLightIndices;
uniform int fg_ClusteredTileSize;
uniform float fg_ClusteredSliceScale;
uniform float fg_ClusteredSliceBias;
const bool debug = true;
const float shininess = 16.0;
struct PointLight {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 attenuation;
};
struct SpotLight {
vec4 position;
vec4 direction;
vec4 ambient;
vec4 diffuse;
vec4 specular;
vec4 attenuation;
float cos_cutoff;
float exponent;
};
layout (std140) uniform PointLightBlock {
PointLight pointLights[256];
};
layout (std140) uniform SpotLightBlock {
SpotLight spotLights[256];
};
vec3 addColors(vec3 a, vec3 b)
{
return 0.14 * log(exp(a/0.14) + exp(b/0.14) - vec3(1.0));
}
// @param p Fragment position in view space.
// @param n Fragment normal in view space.
vec3 addClusteredLightsContribution(vec3 inputColor, vec3 p, vec3 n)
{
int slice = int(max(log2(-p.z) * fg_ClusteredSliceScale
+ fg_ClusteredSliceBias, 0.0));
ivec3 clusterCoord = ivec3(gl_FragCoord.xy / fg_ClusteredTileSize, slice);
uvec3 cluster = texelFetch(fg_ClusteredLightGrid,
clusterCoord,
0).rgb;
uint startIndex = cluster.r;
uint pointCount = cluster.g;
uint spotCount = cluster.b;
vec3 color = vec3(0.0);
for (uint i = uint(0); i < pointCount; ++i) {
uint lightListIndex = texelFetch(fg_ClusteredLightIndices,
int(startIndex + i)).r;
PointLight light = pointLights[lightListIndex];
float range = light.attenuation.w;
vec3 toLight = light.position.xyz - p;
// Ignore fragments outside the light volume
if (dot(toLight, toLight) > (range * range))
continue;
////////////////////////////////////////////////////////////////////////
// Actual lighting
float d = length(toLight);
float att = 1.0 / (light.attenuation.x // constant
+ light.attenuation.y * d // linear
+ light.attenuation.z * d * d); // quadratic
vec3 lightDir = normalize(toLight);
float NdotL = max(dot(n, lightDir), 0.0);
vec3 Iamb = light.ambient.rgb;
vec3 Idiff = light.diffuse.rgb * NdotL;
vec3 Ispec = vec3(0.0);
if (NdotL > 0.0) {
vec3 halfVector = normalize(lightDir + normalize(-p));
float NdotHV = max(dot(n, halfVector), 0.0);
Ispec = light.specular.rgb * att * pow(NdotHV, shininess);
}
color += addColors(color, (Iamb + Idiff + Ispec) * att);
}
for (uint i = uint(0); i < spotCount; ++i) {
uint lightListIndex = texelFetch(fg_ClusteredLightIndices,
int(startIndex + i)).r;
SpotLight light = spotLights[lightListIndex];
vec3 toLight = light.position.xyz - p;
////////////////////////////////////////////////////////////////////////
// Actual lighting
float d = length(toLight);
float att = 1.0 / (light.attenuation.x // constant
+ light.attenuation.y * d // linear
+ light.attenuation.z * d * d); // quadratic
vec3 lightDir = normalize(toLight);
float spotDot = dot(-lightDir, light.direction.xyz);
if (spotDot < light.cos_cutoff)
continue;
att *= pow(spotDot, light.exponent);
float NdotL = max(dot(n, lightDir), 0.0);
vec3 Iamb = light.ambient.rgb;
vec3 Idiff = light.diffuse.rgb * NdotL;
vec3 Ispec = vec3(0.0);
if (NdotL > 0.0) {
vec3 halfVector = normalize(lightDir + normalize(-p));
float NdotHV = max(dot(n, halfVector), 0.0);
Ispec = light.specular.rgb * att * pow(NdotHV, shininess);
}
color += (Iamb + Idiff + Ispec) * att;
}
return clamp(color + inputColor, 0.0, 1.0);
}