1
0
Fork 0
fgdata/Nasal/orbital_target.nas

299 lines
7.5 KiB
Text
Raw Permalink Normal View History

###########################################################################
# simulation of a faraway orbital target (needs handover to spacecraft-specific
# code for close range)
#
# SPDX-License-Identifier: GPL-2.0-or-later
#
# NOTE! This copyright does *not* cover user models that use these Nasal
# services by normal function calls - this is merely considered normal use
# of the code, and does *not* fall under the heading of "derived work."
#
# Thorsten Renk 2016-2019
###########################################################################
var orbitalTarget = {
new: func(altitude, inclination, node_longitude, anomaly) {
var t = { parents: [orbitalTarget] };
t.altitude = altitude;
t.radius = 20908323.0 * 0.3048 + t.altitude;
t.GM = 398759391386476.0;
#t.GM = 398600441800000.0;
t.period = 2.0 * math.pi * math.sqrt(math.pow(t.radius, 3.0)/ t.GM);
t.inclination = inclination;
t.inc_rad = t.inclination * math.pi/180.0;
t.l_vec = [math.sin(t.inc_rad), 0.0, math.cos(t.inc_rad)];
t.node_longitude = node_longitude;
t.nl_rad = t.node_longitude * math.pi/180.0;
t.initial_nl_rad = t.nl_rad;
var l_tmp = t.l_vec[0];
t.l_vec[0] = math.sin(t.nl_rad) * l_tmp;
t.l_vec[1] = -math.cos(t.nl_rad) * l_tmp;
t.anomaly = anomaly;
t.anomaly_rad = t.anomaly * math.pi/180.0;
t.initial_anomaly_rad = t.anomaly_rad;
t.delta_lon = 0.0;
t.update_time = 0.1;
t.running_flag = 0;
t.elapsed_time = 0.0;
t.delta_time = 0.0;
t.label = "";
print ("Orbital Period: ", t.period);
# Coefficients for the J3 altitude variation
var inc_var = t.inclination/60.0;
#print ("inc_var:", inc_var);
t.coeff1 = (10268. - 0.99579 * (t.altitude / 1000.0)) * inc_var;
t.coeff2 = 0.212 * 2.0 * math.pi;
#t.node_drift = -4361.26 * 1./math.pow(t.radius/1000.0 ,2.0) * math.cos(t.inc_rad);
t.node_drift = -2.16732e+9 /math.pow(t.radius/1000.0, 3.48908) * math.cos(t.inc_rad);
print ("Drift rate: ", t.node_drift);
return t;
},
set_anomaly: func (anomaly) {
t.anomaly = anomaly;
t.anomaly_rad = t.anomaly * math.pi/180.0;
},
set_delta_lon: func (dl) {
t.delta_lon = dl;
},
list: func {
print("Radius: ", me.radius, " period: ", me.period);
print("L_vector: ", me.l_vec[0], " ", me.l_vec[1], " ", me.l_vec[2]);
print("L_norm: ", math.sqrt(me.l_vec[0] * me.l_vec[0] + me.l_vec[1] * me.l_vec[1] + me.l_vec[2] * me.l_vec[2]));
var pos = me.get_inertial_pos();
print("Inertial: ", pos[0], " ", pos[1], " ", pos[2]);
print("Rad: ", math.sqrt(pos[0] * pos[0] + pos[1] * pos[1] + pos[2] * pos[2]));
var lla = me.get_latlonalt();
print("Lat: ", lla[0], " lon: ", lla[1], " alt: ", lla[2]);
},
evolve: func {
var dt = getprop("/sim/time/delta-sec");
#var speedup = getprop("/sim/speed-up");
#dt = dt * speedup;
me.anomaly_rad = me.anomaly_rad + dt/me.period * 2.0 * math.pi;
if (me.anomaly_rad > 2.0 * math.pi)
{
me.anomaly_rad = me.anomaly_rad - 2.0 * math.pi;
}
me.anomaly = me.anomaly_rad * 180.0/math.pi;
me.delta_lon = me.delta_lon + dt * 0.00418333333333327;
me.node_longitude = me.node_longitude + me.node_drift * dt;
me.nl_rad = me.node_longitude * math.pi/180.0;
me.l_vec = [math.sin(me.inc_rad), 0.0, math.cos(me.inc_rad)];
var l_tmp = me.l_vec[0];
me.l_vec[0] = math.sin(me.nl_rad) * l_tmp;
me.l_vec[1] = -math.cos(me.nl_rad) * l_tmp;
#print (me.label);
},
get_inertial_pos: func {
return me.compute_inertial_pos(me.anomaly_rad, me.nl_rad);
},
get_inertial_pos_at_time: func (time) {
var anomaly_rad = me.initial_anomaly_rad + (time - me.delta_time)/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var nl_rad = me.initial_nl_rad + me.node_drift * (time - me.delta_time) * math.pi/180.0;
return me.compute_inertial_pos(anomaly_rad, nl_rad);
},
get_inertial_speed: func () {
# obtain via numerical discretization from two points
var anomaly_rad = me.anomaly_rad;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var pos1 = me.compute_inertial_pos(anomaly_rad, me.nl_rad);
anomaly_rad = me.anomaly_rad + 0.1/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var pos2 = me.compute_inertial_pos(anomaly_rad, me.nl_rad);
var vx = (pos2[0] - pos1[0])/0.1;
var vy = (pos2[1] - pos1[1])/0.1;
var vz = (pos2[2] - pos1[2])/0.1;
return [vx, vy, vz];
},
get_inertial_speed_at_time: func (time) {
# obtain via numerical discretization from two points
var anomaly_rad = me.initial_anomaly_rad + (time- me.delta_time)/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
var nl_rad = me.initial_nl_rad + me.node_drift * (time - me.delta_time) * math.pi/180.0;
var pos1 = me.compute_inertial_pos(anomaly_rad, nl_rad);
anomaly_rad = me.initial_anomaly_rad + ((time - me.delta_time) + 0.1)/me.period * 2.0 * math.pi;
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
nl_rad = me.initial_nl_rad + me.node_drift * ((time - me.delta_time) +0.1) * math.pi/180.0;
var pos2 = me.compute_inertial_pos(anomaly_rad, nl_rad);
var vx = (pos2[0] - pos1[0])/0.1;
var vy = (pos2[1] - pos1[1])/0.1;
var vz = (pos2[2] - pos1[2])/0.1;
return [vx, vy, vz];
},
compute_inertial_pos: func (anomaly_rad, nl_rad) {
# J3 variation around radius
while (anomaly_rad > 2.0 * math.pi)
{
anomaly_rad = anomaly_rad - 2.0 * math.pi;
}
while (anomaly_rad < 0.0)
{
anomaly_rad = anomaly_rad + 2.0 * math.pi;
}
var r_corr = me.coeff1 * math.exp(- math.pow(((anomaly_rad - math.pi)/ me.coeff2),2.0));
#r_corr = 0.0;
#print (r_corr);
# movement around equatorial orbit
var x = (me.radius + r_corr) * math.cos(anomaly_rad);
var y = (me.radius + r_corr) * math.sin(anomaly_rad);
var z = 0;
# tilt with inclination
z = y * math.sin(me.inc_rad);
y = y * math.cos(me.inc_rad);
# rotate with node longitude
var xp = x * math.cos(nl_rad) - y * math.sin(nl_rad);
var yp = x * math.sin(nl_rad) + y * math.cos(nl_rad);
# this is a good bit of trickery to capture leading J3 dynamics
var corr_200 = -2.6e-5 * me.inclination + 1.00321;
var corr = corr_200 * (1.0 + (me.altitude/1000.0-200.0) * 6e-7);
corr = 1.0 + (0.64 * (corr -1.0));
#print ("Corr200 is now:", corr_200);
#print ("Corr is now:", corr);
#print ("Altitude: ", me.altitude);
var radius_orig = math.sqrt(xp * xp + yp * yp + z* z);
z /= corr;
var radius_corr = math.sqrt(xp * xp + yp * yp + z* z);
xp *= radius_orig/radius_corr;
yp *= radius_orig/radius_corr;
z *= radius_orig/radius_corr;
return [xp, yp, z];
},
get_latlonalt: func {
var coordinates = geo.Coord.new();
var inertial_pos = me.get_inertial_pos();
coordinates.set_xyz(inertial_pos[0], inertial_pos[1], inertial_pos[2]);
coordinates.set_lon(coordinates.lon() - me.delta_lon);
return [coordinates.lat(), coordinates.lon(), coordinates.alt()];
},
start: func {
if (me.running_flag == 1) {return;}
me.running_flag = 1;
me.run();
},
stop: func {
me.running_flag = 0;
},
run: func {
me.evolve (me.update_time);
if (me.running_flag == 1)
{settimer(func me.run(), 0);}
},
test_suite: func {
var time = 0;
var radius = 0;
var pos = [];
for (var i = 0; i< 300; i=i+1)
{
time = i * 60;
pos = me.get_inertial_pos_at_time(time);
radius = math.sqrt(pos[0] * pos[0] + pos[1] * pos[1] + pos[2] * pos[2]);
print (time, " ", radius);
}
},
};