1
0
Fork 0
flightgear/test_suite/simgear_tests/math/test-up.cxx
Edward d'Auvergne 708bf948b3 TestSuite: Converted the old tests/test-up.cxx program into a simgear unit test.
This old standalone test, from Curt back in 2001, was converted to the format
required for the CppUnit test suite.  As most of simgear/math/sg_geodesy.hxx no
longer exists, the code was updated using SGGeod and SGGeoc.  Hardcoded values
are used to permanently lock in the values currently calculated by simgear.
2018-03-23 17:26:04 +01:00

172 lines
5.8 KiB
C++

// do some test relating to the concept of "up"
#include <iostream>
#include <simgear/math/sg_geodesy.hxx>
#include "testSGGeodesy.hxx"
using std::cout;
using std::endl;
// The test-up unit test.
void MathGeodesyTests::testUp()
{
// for each lat/lon given in goedetic coordinates, calculate
// geocentric coordinates, cartesian coordinates, the local "up"
// vector (based on original geodetic lat/lon), as well as the "Z"
// intercept (for which 0 = center of earth)
double lon = 0;
double alt = 0;
int i;
const int n = 19;
double lat[n] = {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90};
// Hard coded expected results.
double lat_geoc_expected[n] = {
0,
4.96669608700923,
9.93439421027913,
14.9040671396528,
19.8766298623747,
24.8529125604827,
29.8336358098291,
34.8193887023496,
39.8106105519284,
44.8075767840180,
49.8103895262907,
54.8189733092144,
59.8330761504926,
64.8522761370246,
69.8759934364236,
74.9035074740039,
79.9339788099657,
84.9664750566862,
90
};
double cart_expected[n][3] = {
{6378137, 0, 0},
{6353866.26310279, 555891.26758132, 0},
{6281238.76737403, 1107551.86696002, 0},
{6160807.25190988, 1650783.32787306, 0},
{5993488.27326157, 2181451.33089075, 0},
{5780555.22988658, 2695517.17208404, 0},
{5523628.67081747, 3189068.5, 0},
{5224663.96230526, 3658349.09101875, 0},
{4885936.40630155, 4099787.43648327, 0},
{4510023.92403682, 4510023.92403682, 0},
{4099787.43648328, 4885936.40630155, 0},
{3658349.09101875, 5224663.96230526, 0},
{3189068.5, 5523628.67081747, 0},
{2695517.17208404, 5780555.22988658, 0},
{2181451.33089075, 5993488.27326157, 0},
{1650783.32787306, 6160807.25190988, 0},
{1107551.86696002, 6281238.76737403, 0},
{555891.26758132, 6353866.26310279, 0},
{3.90548253078665e-10, 6378137, 0}
};
double up_expected[n][3] = {
{6378137, 0, -0},
{6354027.82056206, 0, -552183.96002777},
{6281872.82960345, 0, -1100248.54773536},
{6162189.08803834, 0, -1640100.14019589},
{5995836.38389635, 0, -2167696.78782876},
{5784014.11472572, 0, -2679074.46295779},
{5528256.63929284, 0, -3170373.73538364},
{5230426.84020036, 0, -3637866.9093781},
{4892707.60007269, 0, -4077985.57220038},
{4517590.87884893, 0, -4487348.40886592},
{4107864.09120678, 0, -4862789.03770643},
{3666593.52237417, 0, -5201383.52320227},
{3197104.58692395, 0, -5500477.13393864},
{2702958.82600294, 0, -5757709.84149597},
{2187927.64927902, 0, -5971040.00711856},
{1655962.9523645, 0, -6138765.68235824},
{1111164.87081001, 0, -6259542.96102869},
{557747.059253584, 0, -6332400.86398617},
{3.91862092481447e-10, 0, -6356752.31424518}
};
double geod_intercept[n] = {
0,
552169.92020293,
1100137.4939038,
1639732.35699488,
2166847.86675177,
2677472.35586416,
3167719.66364641,
3633858.71206688,
4072341.90150465,
4479832.11012469,
4853228.0913901,
5189688.07642079,
5486651.40157058,
5741857.99662372,
5953365.5852939,
6119564.46711958,
6239189.76825642,
6311331.06793104,
6335439.32729282
};
double geoc_intercept[n] = {
0,
552169.92020293,
1100137.4939038,
1639732.35699488,
2166847.86675177,
2677472.35586416,
3167719.66364641,
3633858.71206688,
4072341.90150465,
4479832.11012469,
4853228.0913901,
5189688.07642079,
5486651.40157058,
5741857.99662372,
5953365.5852939,
6119564.46711958,
6239189.76825642,
6311331.06793104,
6378137 // Sole difference with geod, due to truncation artifacts.
};
for (i=0; i < n; i++) {
cout << "lon = " << lon << " geod lat = " << lat[i];
double sl_radius, lat_geoc;
sgGeodToGeoc( lat[i] * SGD_DEGREES_TO_RADIANS, alt, &sl_radius, &lat_geoc );
cout << " geoc lat = " << lat_geoc * SGD_RADIANS_TO_DEGREES << endl;
CPPUNIT_ASSERT_DOUBLES_EQUAL(lat_geoc_expected[i], lat_geoc*SGD_RADIANS_TO_DEGREES, 1e-10);
double pc[3];
sgGeodToCart( lon * SGD_DEGREES_TO_RADIANS, lat[i] * SGD_DEGREES_TO_RADIANS, 0.0, pc );
cout << " cartesian = " << SGVec3d(pc[0], pc[1], pc[2]) << endl;
for (int j=0; j < 3; j++)
CPPUNIT_ASSERT_DOUBLES_EQUAL(cart_expected[i][j], pc[j], 1e-7);
SGGeod geod_up = SGGeod::fromDeg(lon, -lat[i]);
SGVec3d geod_up_vect = SGVec3d::fromGeod(geod_up);
cout << " geod up = " << geod_up_vect << endl;
for (int j=0; j < 3; j++)
CPPUNIT_ASSERT_DOUBLES_EQUAL(up_expected[i][j], geod_up_vect[j], 1e-7);
SGGeoc geoc_up = SGGeoc::fromGeod(geod_up);
SGVec3d geoc_up_vect = SGVec3d::fromGeoc(geoc_up);
cout << " geoc up = " << geoc_up_vect << endl;
for (int j=0; j < 3; j++)
CPPUNIT_ASSERT_DOUBLES_EQUAL(up_expected[i][j], geoc_up_vect[j], 1e-7);
double slope = geod_up_vect[2] / geod_up_vect[0];
double intercept = pc[2] - slope * pc[0];
cout << " Z intercept (based on geodetic up) = " << intercept << endl;
CPPUNIT_ASSERT_DOUBLES_EQUAL(geod_intercept[i], intercept, 1e-7);
slope = geoc_up_vect[2] / geoc_up_vect[0];
intercept = pc[2] - slope * pc[0];
cout << " Z intercept (based on geocentric up) = " << intercept << endl;
CPPUNIT_ASSERT_DOUBLES_EQUAL(geoc_intercept[i], intercept, 1e-7);
}
}