1
0
Fork 0
flightgear/src/Cockpit/panel_io.cxx

837 lines
23 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// panel_io.cxx - I/O for 2D panel.
//
// Written by David Megginson, started January 2000.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
#include <simgear/compiler.h>
#include <simgear/misc/sg_path.hxx>
#include <simgear/debug/logstream.hxx>
#include <simgear/misc/props.hxx>
#include STL_IOSTREAM
#include STL_FSTREAM
#include STL_STRING
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include "panel.hxx"
#include "steam.hxx"
#include "panel_io.hxx"
#if !defined (SG_HAVE_NATIVE_SGI_COMPILERS)
SG_USING_STD(istream);
SG_USING_STD(ifstream);
#endif
SG_USING_STD(string);
////////////////////////////////////////////////////////////////////////
// Default panel, instrument, and layer for when things go wrong...
////////////////////////////////////////////////////////////////////////
static FGCroppedTexture defaultTexture("Textures/default.rgb");
/**
* Default layer: the default texture.
*/
class DefaultLayer : public FGTexturedLayer
{
public:
DefaultLayer () : FGTexturedLayer(defaultTexture)
{
}
};
/**
* Default instrument: a single default layer.
*/
class DefaultInstrument : public FGLayeredInstrument
{
public:
DefaultInstrument (int x, int y, int w, int h)
: FGLayeredInstrument(x, y, w, h)
{
addLayer(new DefaultLayer());
}
};
/**
* Default panel: the default texture.
*/
class DefaultPanel : public FGPanel
{
public:
DefaultPanel (int x, int y, int w, int h) : FGPanel(x, y, w, h)
{
setBackground(defaultTexture.getTexture());
}
};
////////////////////////////////////////////////////////////////////////
// Built-in layer for the magnetic compass ribbon layer.
//
// TODO: move this out into a special directory for built-in
// layers of various sorts.
////////////////////////////////////////////////////////////////////////
class FGMagRibbon : public FGTexturedLayer
{
public:
FGMagRibbon (int w, int h);
virtual ~FGMagRibbon () {}
virtual void draw ();
};
FGMagRibbon::FGMagRibbon (int w, int h)
: FGTexturedLayer(w, h)
{
FGCroppedTexture texture("Aircraft/c172/Instruments/Textures/compass-ribbon.rgb");
setTexture(texture);
}
void
FGMagRibbon::draw ()
{
double heading = FGSteam::get_MH_deg();
double xoffset, yoffset;
while (heading >= 360.0) {
heading -= 360.0;
}
while (heading < 0.0) {
heading += 360.0;
}
if (heading >= 60.0 && heading <= 180.0) {
xoffset = heading / 240.0;
yoffset = 0.75;
} else if (heading >= 150.0 && heading <= 270.0) {
xoffset = (heading - 90.0) / 240.0;
yoffset = 0.50;
} else if (heading >= 240.0 && heading <= 360.0) {
xoffset = (heading - 180.0) / 240.0;
yoffset = 0.25;
} else {
if (heading < 270.0)
heading += 360.0;
xoffset = (heading - 270.0) / 240.0;
yoffset = 0.0;
}
xoffset = 1.0 - xoffset;
// Adjust to put the number in the centre
xoffset -= 0.25;
FGCroppedTexture &t = getTexture();
t.setCrop(xoffset, yoffset, xoffset + 0.5, yoffset + 0.25);
FGTexturedLayer::draw();
}
////////////////////////////////////////////////////////////////////////
// Read and construct a panel.
//
// The panel is specified as a regular property list, and each of the
// instruments is its own, separate property list (and thus, a separate
// XML document). The functions in this section read in the files
// as property lists, then extract properties to set up the panel
// itself.
//
// A panel contains zero or more instruments.
//
// An instrument contains one or more layers and zero or more actions.
//
// A layer contains zero or more transformations.
//
// Some special types of layers also contain other objects, such as
// chunks of text or other layers.
//
// There are currently four types of layers:
//
// 1. Textured Layer (type="texture"), the default
// 2. Text Layer (type="text")
// 3. Switch Layer (type="switch")
// 4. Built-in Layer (type="built-in", must also specify class)
//
// The only built-in layer so far is the ribbon for the magnetic compass
// (class="compass-ribbon").
//
// There are three types of actions:
//
// 1. Adjust (type="adjust"), the default
// 2. Swap (type="swap")
// 3. Toggle (type="toggle")
//
// There are three types of transformations:
//
// 1. X shift (type="x-shift"), the default
// 2. Y shift (type="y-shift")
// 3. Rotation (type="rotation")
//
// Each of these may be associated with a property, so that a needle
// will rotate with the airspeed, for example, or may have a fixed
// floating-point value.
////////////////////////////////////////////////////////////////////////
/**
* Read a cropped texture from the instrument's property list.
*
* The x1 and y1 properties give the starting position of the texture
* (between 0.0 and 1.0), and the the x2 and y2 properties give the
* ending position. For example, to use the bottom-left quarter of a
* texture, x1=0.0, y1=0.0, x2=0.5, y2=0.5.
*/
static FGCroppedTexture
readTexture (const SGPropertyNode * node)
{
FGCroppedTexture texture(node->getStringValue("path"),
node->getFloatValue("x1"),
node->getFloatValue("y1"),
node->getFloatValue("x2", 1.0),
node->getFloatValue("y2", 1.0));
SG_LOG(SG_INPUT, SG_INFO, "Read texture " << node->getName());
return texture;
}
/**
* Read an action from the instrument's property list.
*
* The action will be performed when the user clicks a mouse button
* within the specified region of the instrument. Actions always
* work by modifying the value of a property (see the SGValue class).
*
* The following action types are defined:
*
* "adjust" - modify the value of a floating-point property by
* the increment specified. This is the default.
*
* "swap" - swap the values of two-floating-point properties.
*
* "toggle" - toggle the value of a boolean property between true and
* false.
*
* For the adjust action, it is possible to specify an increment
* (use a negative number for a decrement), a minimum allowed value,
* a maximum allowed value, and a flag to indicate whether the value
* should freeze or wrap-around when it reachs the minimum or maximum.
*
* The action will be scaled automatically if the instrument is not
* being drawn at its regular size.
*/
static FGPanelAction *
readAction (const SGPropertyNode * node, float w_scale, float h_scale)
{
FGPanelAction * action = 0;
string name = node->getStringValue("name");
string type = node->getStringValue("type");
int button = node->getIntValue("button");
int x = int(node->getIntValue("x") * w_scale);
int y = int(node->getIntValue("y") * h_scale);
int w = int(node->getIntValue("w") * w_scale);
int h = int(node->getIntValue("h") * h_scale);
if (type == "") {
SG_LOG(SG_INPUT, SG_ALERT,
"No type supplied for action " << name << " assuming \"adjust\"");
type = "adjust";
}
// Adjust a property value
if (type == "adjust") {
string propName = node->getStringValue("property");
SGValue * value = fgGetValue(propName, true);
float increment = node->getFloatValue("increment", 1.0);
float min = node->getFloatValue("min", 0.0);
float max = node->getFloatValue("max", 0.0);
bool wrap = node->getBoolValue("wrap", false);
if (min == max)
SG_LOG(SG_INPUT, SG_ALERT, "Action " << node->getName()
<< " has same min and max value");
action = new FGAdjustAction(button, x, y, w, h, value,
increment, min, max, wrap);
}
// Swap two property values
else if (type == "swap") {
string propName1 = node->getStringValue("property1");
string propName2 = node->getStringValue("property2");
SGValue * value1 = fgGetValue(propName1, true);
SGValue * value2 = fgGetValue(propName2, true);
action = new FGSwapAction(button, x, y, w, h, value1, value2);
}
// Toggle a boolean value
else if (type == "toggle") {
string propName = node->getStringValue("property");
SGValue * value = fgGetValue(propName, true);
action = new FGToggleAction(button, x, y, w, h, value);
}
// Unrecognized type
else {
SG_LOG(SG_INPUT, SG_ALERT, "Unrecognized action type " << type);
return 0;
}
return action;
}
/**
* Read a transformation from the instrument's property list.
*
* The panel module uses the transformations to slide or spin needles,
* knobs, and other indicators, and to place layers in the correct
* positions. Every layer starts centered exactly on the x,y co-ordinate,
* and many layers need to be moved or rotated simply to display the
* instrument correctly.
*
* There are three types of transformations:
*
* "x-shift" - move the layer horizontally.
*
* "y-shift" - move the layer vertically.
*
* "rotation" - rotate the layer.
*
* Each transformation may have a fixed offset, and may also have
* a floating-point property value to add to the offset. The
* floating-point property may be clamped to a minimum and/or
* maximum range and scaled (after clamping).
*
* Note that because of the way OpenGL works, transformations will
* appear to be applied backwards.
*/
static FGPanelTransformation *
readTransformation (const SGPropertyNode * node, float w_scale, float h_scale)
{
FGPanelTransformation * t = new FGPanelTransformation;
string name = node->getName();
string type = node->getStringValue("type");
string propName = node->getStringValue("property", "");
SGValue * value = 0;
if (type == "") {
SG_LOG(SG_INPUT, SG_ALERT,
"No type supplied for transformation " << name
<< " assuming \"rotation\"");
type = "rotation";
}
if (propName != (string)"") {
value = fgGetValue(propName, true);
}
t->value = value;
t->min = node->getFloatValue("min", -9999999);
t->max = node->getFloatValue("max", 99999999);
t->factor = node->getFloatValue("scale", 1.0);
t->offset = node->getFloatValue("offset", 0.0);
// Check for an interpolation table
const SGPropertyNode * trans_table = node->getNode("interpolation");
if (trans_table != 0) {
cerr << "Found interpolation table with " << trans_table->nChildren() << "children" << endl;
t->table = new SGInterpTable();
for(int i = 0; i < trans_table->nChildren(); i++) {
const SGPropertyNode * node = trans_table->getChild(i);
if (node->getName() == "entry") {
double ind = node->getDoubleValue("ind", 0.0);
double dep = node->getDoubleValue("dep", 0.0);
cerr << "Adding interpolation entry " << ind << "==>" << dep << endl;
t->table->addEntry(ind, dep);
} else {
SG_LOG(SG_INPUT, SG_INFO, "Skipping " << node->getName()
<< " in interpolation");
}
}
} else {
t->table = 0;
}
// Move the layer horizontally.
if (type == "x-shift") {
t->type = FGPanelTransformation::XSHIFT;
// t->min *= w_scale; //removed by Martin Dressler
// t->max *= w_scale; //removed by Martin Dressler
t->offset *= w_scale;
t->factor *= w_scale; //Added by Martin Dressler
}
// Move the layer vertically.
else if (type == "y-shift") {
t->type = FGPanelTransformation::YSHIFT;
//t->min *= h_scale; //removed
//t->max *= h_scale; //removed
t->offset *= h_scale;
t->factor *= h_scale; //Added
}
// Rotate the layer. The rotation
// is in degrees, and does not need
// to scale with the instrument size.
else if (type == "rotation") {
t->type = FGPanelTransformation::ROTATION;
}
else {
SG_LOG(SG_INPUT, SG_ALERT, "Unrecognized transformation type " << type);
delete t;
return 0;
}
SG_LOG(SG_INPUT, SG_INFO, "Read transformation " << name);
return t;
}
/**
* Read a chunk of text from the instrument's property list.
*
* A text layer consists of one or more chunks of text. All chunks
* share the same font size and color (and eventually, font), but
* each can come from a different source. There are three types of
* text chunks:
*
* "literal" - a literal text string (the default)
*
* "text-value" - the current value of a string property
*
* "number-value" - the current value of a floating-point property.
*
* All three may also include a printf-style format string.
*/
FGTextLayer::Chunk *
readTextChunk (const SGPropertyNode * node)
{
FGTextLayer::Chunk * chunk;
string name = node->getStringValue("name");
string type = node->getStringValue("type");
string format = node->getStringValue("format");
// Default to literal text.
if (type == "") {
SG_LOG(SG_INPUT, SG_INFO, "No type provided for text chunk " << name
<< " assuming \"literal\"");
type = "literal";
}
// A literal text string.
if (type == "literal") {
string text = node->getStringValue("text");
chunk = new FGTextLayer::Chunk(text, format);
}
// The value of a string property.
else if (type == "text-value") {
SGValue * value =
fgGetValue(node->getStringValue("property"), true);
chunk = new FGTextLayer::Chunk(FGTextLayer::TEXT_VALUE, value, format);
}
// The value of a float property.
else if (type == "number-value") {
string propName = node->getStringValue("property");
float scale = node->getFloatValue("scale", 1.0);
SGValue * value = fgGetValue(propName, true);
chunk = new FGTextLayer::Chunk(FGTextLayer::DOUBLE_VALUE, value,
format, scale);
}
// Unknown type.
else {
SG_LOG(SG_INPUT, SG_ALERT, "Unrecognized type " << type
<< " for text chunk " << name);
return 0;
}
return chunk;
}
/**
* Read a single layer from an instrument's property list.
*
* Each instrument consists of one or more layers stacked on top
* of each other; the lower layers show through only where the upper
* layers contain an alpha component. Each layer can be moved
* horizontally and vertically and rotated using transformations.
*
* This module currently recognizes four kinds of layers:
*
* "texture" - a layer containing a texture (the default)
*
* "text" - a layer containing text
*
* "switch" - a layer that switches between two other layers
* based on the current value of a boolean property.
*
* "built-in" - a hard-coded layer supported by C++ code in FlightGear.
*
* Currently, the only built-in layer class is "compass-ribbon".
*/
static FGInstrumentLayer *
readLayer (const SGPropertyNode * node, float w_scale, float h_scale)
{
FGInstrumentLayer * layer = NULL;
string name = node->getStringValue("name");
string type = node->getStringValue("type");
int w = node->getIntValue("w", -1);
int h = node->getIntValue("h", -1);
if (w != -1)
w = int(w * w_scale);
if (h != -1)
h = int(h * h_scale);
if (type == "") {
SG_LOG(SG_INPUT, SG_ALERT,
"No type supplied for layer " << name
<< " assuming \"texture\"");
type = "texture";
}
// A textured instrument layer.
if (type == "texture") {
FGCroppedTexture texture = readTexture(node->getNode("texture"));
layer = new FGTexturedLayer(texture, w, h);
}
// A textual instrument layer.
else if (type == "text") {
FGTextLayer * tlayer = new FGTextLayer(w, h); // FIXME
// Set the text color.
float red = node->getFloatValue("color/red", 0.0);
float green = node->getFloatValue("color/green", 0.0);
float blue = node->getFloatValue("color/blue", 0.0);
tlayer->setColor(red, green, blue);
// Set the point size.
float pointSize = node->getFloatValue("point-size", 10.0) * w_scale;
tlayer->setPointSize(pointSize);
// Set the font.
// TODO
const SGPropertyNode * chunk_group = node->getNode("chunks");
if (chunk_group != 0) {
int nChunks = chunk_group->nChildren();
for (int i = 0; i < nChunks; i++) {
const SGPropertyNode * node = chunk_group->getChild(i);
if (node->getName() == "chunk") {
FGTextLayer::Chunk * chunk = readTextChunk(node);
if (chunk != 0)
tlayer->addChunk(chunk);
} else {
SG_LOG(SG_INPUT, SG_INFO, "Skipping " << node->getName()
<< " in chunks");
}
}
layer = tlayer;
}
}
// A switch instrument layer.
else if (type == "switch") {
SGValue * value =
fgGetValue(node->getStringValue("property"), true);
FGInstrumentLayer * layer1 =
readLayer(node->getNode("layer1"), w_scale, h_scale);
FGInstrumentLayer * layer2 =
readLayer(node->getNode("layer2"), w_scale, h_scale);
layer = new FGSwitchLayer(w, h, value, layer1, layer2);
}
// A built-in instrument layer.
else if (type == "built-in") {
string layerclass = node->getStringValue("class");
if (layerclass == "mag-ribbon") {
layer = new FGMagRibbon(w, h);
}
else if (layerclass == "") {
SG_LOG(SG_INPUT, SG_ALERT, "No class provided for built-in layer "
<< name);
return 0;
}
else {
SG_LOG(SG_INPUT, SG_ALERT, "Unknown built-in layer class "
<< layerclass);
return 0;
}
}
// An unknown type.
else {
SG_LOG(SG_INPUT, SG_ALERT, "Unrecognized layer type " << type);
delete layer;
return 0;
}
//
// Get the transformations for each layer.
//
const SGPropertyNode * trans_group = node->getNode("transformations");
if (trans_group != 0) {
int nTransformations = trans_group->nChildren();
for (int i = 0; i < nTransformations; i++) {
const SGPropertyNode * node = trans_group->getChild(i);
if (node->getName() == "transformation") {
FGPanelTransformation * t = readTransformation(node, w_scale, h_scale);
if (t != 0)
layer->addTransformation(t);
} else {
SG_LOG(SG_INPUT, SG_INFO, "Skipping " << node->getName()
<< " in transformations");
}
}
}
SG_LOG(SG_INPUT, SG_INFO, "Read layer " << name);
return layer;
}
/**
* Read an instrument from a property list.
*
* The instrument consists of a preferred width and height
* (the panel may override these), together with a list of layers
* and a list of actions to be performed when the user clicks
* the mouse over the instrument. All co-ordinates are relative
* to the instrument's position, so instruments are fully relocatable;
* likewise, co-ordinates for actions and transformations will be
* scaled automatically if the instrument is not at its preferred size.
*/
static FGPanelInstrument *
readInstrument (const SGPropertyNode * node)
{
const string &name = node->getStringValue("name");
int x = node->getIntValue("x", -1);
int y = node->getIntValue("y", -1);
int real_w = node->getIntValue("w", -1);
int real_h = node->getIntValue("h", -1);
int w = node->getIntValue("w-base", -1);
int h = node->getIntValue("h-base", -1);
if (x == -1 || y == -1) {
SG_LOG(SG_INPUT, SG_ALERT,
"x and y positions must be specified and >0");
return 0;
}
float w_scale = 1.0;
float h_scale = 1.0;
if (real_w != -1) {
w_scale = float(real_w) / float(w);
w = real_w;
}
if (real_h != -1) {
h_scale = float(real_h) / float(h);
h = real_h;
}
SG_LOG(SG_INPUT, SG_INFO, "Reading instrument " << name);
FGLayeredInstrument * instrument =
new FGLayeredInstrument(x, y, w, h);
//
// Get the actions for the instrument.
//
const SGPropertyNode * action_group = node->getNode("actions");
if (action_group != 0) {
int nActions = action_group->nChildren();
for (int i = 0; i < nActions; i++) {
const SGPropertyNode * node = action_group->getChild(i);
if (node->getName() == "action") {
FGPanelAction * action = readAction(node, w_scale, h_scale);
if (action != 0)
instrument->addAction(action);
} else {
SG_LOG(SG_INPUT, SG_INFO, "Skipping " << node->getName()
<< " in actions");
}
}
}
//
// Get the layers for the instrument.
//
const SGPropertyNode * layer_group = node->getNode("layers");
if (layer_group != 0) {
int nLayers = layer_group->nChildren();
for (int i = 0; i < nLayers; i++) {
const SGPropertyNode * node = layer_group->getChild(i);
if (node->getName() == "layer") {
FGInstrumentLayer * layer = readLayer(node, w_scale, h_scale);
if (layer != 0)
instrument->addLayer(layer);
} else {
SG_LOG(SG_INPUT, SG_INFO, "Skipping " << node->getName()
<< " in layers");
}
}
}
SG_LOG(SG_INPUT, SG_INFO, "Done reading instrument " << name);
return instrument;
}
/**
* Construct the panel from a property tree.
*/
FGPanel *
readPanel (const SGPropertyNode * root)
{
SG_LOG(SG_INPUT, SG_INFO, "Reading properties for panel " <<
root->getStringValue("name", "[Unnamed Panel]"));
FGPanel * panel = new FGPanel(0, 0, 1024, 768);
panel->setWidth(root->getIntValue("w", 1024));
panel->setHeight(root->getIntValue("h", 443));
//
// Grab the visible external viewing area, default to
//
panel->setViewHeight(root->getIntValue("view-height",
768 - panel->getHeight() + 2));
//
// Grab the panel's initial offsets, default to 0, 0.
//
if (!fgHasValue("/sim/panel/x-offset"))
fgSetInt("/sim/panel/x-offset", root->getIntValue("x-offset", 0));
if (!fgHasValue("/sim/panel/y-offset"))
fgSetInt("/sim/panel/y-offset", root->getIntValue("y-offset", 0));
//
// Assign the background texture, if any, or a bogus chequerboard.
//
string bgTexture = root->getStringValue("background");
if (bgTexture == "")
bgTexture = "FOO";
panel->setBackground(FGTextureManager::createTexture(bgTexture.c_str()));
SG_LOG(SG_INPUT, SG_INFO, "Set background texture to " << bgTexture);
//
// Create each instrument.
//
SG_LOG(SG_INPUT, SG_INFO, "Reading panel instruments");
const SGPropertyNode * instrument_group = root->getChild("instruments");
if (instrument_group != 0) {
int nInstruments = instrument_group->nChildren();
for (int i = 0; i < nInstruments; i++) {
const SGPropertyNode * node = instrument_group->getChild(i);
if (node->getName() == "instrument") {
FGPanelInstrument * instrument = readInstrument(node);
if (instrument != 0)
panel->addInstrument(instrument);
} else {
SG_LOG(SG_INPUT, SG_INFO, "Skipping " << node->getName()
<< " in instruments section");
}
}
}
SG_LOG(SG_INPUT, SG_INFO, "Done reading panel instruments");
//
// Return the new panel.
//
return panel;
}
/**
* Read a panel from a property list.
*
* Each panel instrument will appear in its own, separate
* property list. The top level simply names the panel and
* places the instruments in their appropriate locations (and
* optionally resizes them if necessary).
*
* Returns 0 if the read fails for any reason.
*/
FGPanel *
fgReadPanel (istream &input)
{
SGPropertyNode root;
if (!readProperties(input, &root)) {
SG_LOG(SG_INPUT, SG_ALERT, "Malformed property list for panel.");
return 0;
}
return readPanel(&root);
}
/**
* Read a panel from a property list.
*
* This function opens a stream to a file, then invokes the
* main fgReadPanel() function.
*/
FGPanel *
fgReadPanel (const string &relative_path)
{
SGPath path(globals->get_fg_root());
path.append(relative_path);
SGPropertyNode root;
if (!readProperties(path.str(), &root)) {
SG_LOG(SG_INPUT, SG_ALERT, "Malformed property list for panel.");
return 0;
}
return readPanel(&root);
}
// end of panel_io.cxx