1
0
Fork 0
flightgear/Simulator/Scenery/tilemgr.cxx
1999-04-06 23:37:07 +00:00

763 lines
22 KiB
C++

// tilemgr.cxx -- routines to handle dynamic management of scenery tiles
//
// Written by Curtis Olson, started January 1998.
//
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#endif
#include <GL/glut.h>
#include <XGL/xgl.h>
#include <Aircraft/aircraft.hxx>
#include <Debug/logstream.hxx>
// #include <Bucket/bucketutils.hxx>
#include <Include/fg_constants.h>
#include <Main/options.hxx>
#include <Main/views.hxx>
#include <Math/fg_geodesy.hxx>
#include <Math/mat3.h>
#include <Math/point3d.hxx>
#include <Math/polar3d.hxx>
#include <Math/vector.hxx>
#include <Objects/material.hxx>
#include <Objects/obj.hxx>
#include <Weather/weather.hxx>
#include "scenery.hxx"
#include "tile.hxx"
#include "tilecache.hxx"
#include "tilemgr.hxx"
// to test clipping speedup in fgTileMgrRender()
#if defined ( USE_FAST_FOV_CLIP )
// #define TEST_FOV_CLIP
// #define TEST_ELEV
#endif
#define FG_LOCAL_X_Y 81 // max(o->tile_diameter) ** 2
#define FG_SQUARE( X ) ( (X) * (X) )
#if defined(USE_MEM) || defined(WIN32)
# define FG_MEM_COPY(to,from,n) memcpy(to, from, n)
#else
# define FG_MEM_COPY(to,from,n) bcopy(from, to, n)
#endif
// closest (potentially viewable) tiles, centered on current tile.
// This is an array of pointers to cache indexes.
int tiles[FG_LOCAL_X_Y];
// Initialize the Tile Manager subsystem
int fgTileMgrInit( void ) {
FG_LOG( FG_TERRAIN, FG_INFO, "Initializing Tile Manager subsystem." );
// load default material library
material_mgr.load_lib();
return 1;
}
// load a tile
void fgTileMgrLoadTile( const FGBucket& p, int *index) {
fgTILECACHE *c;
c = &global_tile_cache;
FG_LOG( FG_TERRAIN, FG_DEBUG, "Updating for bucket " << p );
// if not in cache, load tile into the next available slot
*index = c->exists(p);
if ( *index < 0 ) {
*index = c->next_avail();
c->fill_in(*index, p);
}
FG_LOG( FG_TERRAIN, FG_DEBUG, "Selected cache index: " << *index );
}
// Calculate shortest distance from point to line
static double point_line_dist_squared( const Point3D& tc, const Point3D& vp,
MAT3vec d )
{
MAT3vec p, p0;
double dist;
p[0] = tc.x(); p[1] = tc.y(); p[2] = tc.z();
p0[0] = vp.x(); p0[1] = vp.y(); p0[2] = vp.z();
return fgPointLineSquared(p, p0, d);
}
// Determine scenery altitude. Normally this just happens when we
// render the scene, but we'd also like to be able to do this
// explicitely. lat & lon are in radians. abs_view_pos in meters.
// Returns result in meters.
double
fgTileMgrCurElevNEW( const FGBucket& p ) {
fgTILE *t;
fgFRAGMENT *frag_ptr;
Point3D abs_view_pos = current_view.get_abs_view_pos();
Point3D earth_center(0.0);
Point3D result;
MAT3vec local_up;
double dist, lat_geod, alt, sea_level_r;
int index;
local_up[0] = abs_view_pos.x();
local_up[1] = abs_view_pos.y();
local_up[2] = abs_view_pos.z();
// Find current translation offset
// fgBucketFind(lon * RAD_TO_DEG, lat * RAD_TO_DEG, &p);
index = global_tile_cache.exists(p);
if ( index < 0 ) {
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
return 0.0;
}
t = global_tile_cache.get_tile(index);
scenery.next_center = t->center;
FG_LOG( FG_TERRAIN, FG_DEBUG,
"Current bucket = " << p << " Index = " << p.gen_index_str() );
FG_LOG( FG_TERRAIN, FG_DEBUG,
"abs_view_pos = " << abs_view_pos );
// calculate tile offset
// x = (t->offset.x = t->center.x - scenery.center.x);
// y = (t->offset.y = t->center.y - scenery.center.y);
// z = (t->offset.z = t->center.z - scenery.center.z);
// calc current terrain elevation calculate distance from
// vertical tangent line at current position to center of
// tile.
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared(&(t->offset), &(v->view_pos),
v->local_up), t->bounding_radius); */
dist = point_line_dist_squared( t->center, abs_view_pos, local_up );
if ( dist < FG_SQUARE(t->bounding_radius) ) {
// traverse fragment list for tile
fgTILE::FragmentIterator current = t->begin();
fgTILE::FragmentIterator last = t->end();
for ( ; current != last; ++current ) {
frag_ptr = &(*current);
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared( &(frag_ptr->center),
&abs_view_pos), local_up),
frag_ptr->bounding_radius); */
dist = point_line_dist_squared( frag_ptr->center,
abs_view_pos,
local_up);
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
if ( frag_ptr->intersect( abs_view_pos,
earth_center, 0, result ) ) {
FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " <<
result );
// compute geocentric coordinates of tile center
Point3D pp = fgCartToPolar3d(result);
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
// convert to geodetic coordinates
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
&alt, &sea_level_r);
// printf("alt = %.2f\n", alt);
// exit since we found an intersection
if ( alt > -9999.0 ) {
// printf("returning alt\n");
return alt;
} else {
// printf("returning 0\n");
return 0.0;
}
}
}
}
}
FG_LOG( FG_TERRAIN, FG_INFO, "(new) no terrain intersection found" );
return 0.0;
}
// Determine scenery altitude. Normally this just happens when we
// render the scene, but we'd also like to be able to do this
// explicitely. lat & lon are in radians. abs_view_pos in meters.
// Returns result in meters.
double
fgTileMgrCurElev( double lon, double lat, const Point3D& abs_view_pos ) {
fgTILECACHE *c;
fgTILE *t;
fgFRAGMENT *frag_ptr;
Point3D earth_center(0.0);
Point3D result;
MAT3vec local_up;
double dist, lat_geod, alt, sea_level_r;
int index;
c = &global_tile_cache;
local_up[0] = abs_view_pos.x();
local_up[1] = abs_view_pos.y();
local_up[2] = abs_view_pos.z();
FG_LOG( FG_TERRAIN, FG_DEBUG, "Absolute view pos = " << abs_view_pos );
// Find current translation offset
FGBucket p( lon * RAD_TO_DEG, lat * RAD_TO_DEG );
index = c->exists(p);
if ( index < 0 ) {
FG_LOG( FG_TERRAIN, FG_WARN, "Tile not found" );
return 0.0;
}
t = c->get_tile(index);
scenery.next_center = t->center;
FG_LOG( FG_TERRAIN, FG_DEBUG,
"Pos = (" << lon * RAD_TO_DEG << ", " << lat * RAD_TO_DEG
<< ") Current bucket = " << p
<< " Index = " << p.gen_index_str() );
FG_LOG( FG_TERRAIN, FG_DEBUG, "Tile center " << t->center
<< " bounding radius = " << t->bounding_radius );
// calculate tile offset
// x = (t->offset.x = t->center.x - scenery.center.x);
// y = (t->offset.y = t->center.y - scenery.center.y);
// z = (t->offset.z = t->center.z - scenery.center.z);
// calc current terrain elevation calculate distance from
// vertical tangent line at current position to center of
// tile.
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared(&(t->offset), &(v->view_pos),
v->local_up), t->bounding_radius); */
dist = point_line_dist_squared( t->center, abs_view_pos, local_up );
FG_LOG( FG_TERRAIN, FG_DEBUG, "(gross check) dist squared = " << dist );
if ( dist < FG_SQUARE(t->bounding_radius) ) {
// traverse fragment list for tile
fgTILE::FragmentIterator current = t->begin();
fgTILE::FragmentIterator last = t->end();
for ( ; current != last; ++current ) {
frag_ptr = &(*current);
/* printf("distance squared = %.2f, bounding radius = %.2f\n",
point_line_dist_squared( &(frag_ptr->center),
&abs_view_pos), local_up),
frag_ptr->bounding_radius); */
dist = point_line_dist_squared( frag_ptr->center,
abs_view_pos,
local_up);
if ( dist <= FG_SQUARE(frag_ptr->bounding_radius) ) {
if ( frag_ptr->intersect( abs_view_pos,
earth_center, 0, result ) ) {
FG_LOG( FG_TERRAIN, FG_DEBUG, "intersection point " <<
result );
// compute geocentric coordinates of tile center
Point3D pp = fgCartToPolar3d(result);
FG_LOG( FG_TERRAIN, FG_DEBUG, " polar form = " << pp );
// convert to geodetic coordinates
fgGeocToGeod(pp.lat(), pp.radius(), &lat_geod,
&alt, &sea_level_r);
// printf("alt = %.2f\n", alt);
// exit since we found an intersection
if ( alt > -9999.0 ) {
// printf("returning alt\n");
return alt;
} else {
// printf("returning 0\n");
return 0.0;
}
}
}
}
}
FG_LOG( FG_TERRAIN, FG_INFO, "(old) no terrain intersection found" );
return 0.0;
}
// given the current lon/lat, fill in the array of local chunks. If
// the chunk isn't already in the cache, then read it from disk.
int fgTileMgrUpdate( void ) {
fgTILECACHE *c;
FGInterface *f;
FGBucket p2;
static FGBucket p_last(false);
static double last_lon = -1000.0; // in degrees
static double last_lat = -1000.0; // in degrees
int tile_diameter;
int i, j, dw, dh;
c = &global_tile_cache;
f = current_aircraft.fdm_state;
tile_diameter = current_options.get_tile_diameter();
FGBucket p1( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG );
dw = tile_diameter / 2;
dh = tile_diameter / 2;
if ( p1 == p_last ) {
// same bucket as last time
FG_LOG( FG_TERRAIN, FG_DEBUG, "Same bucket as last time" );
} else if ( p_last.get_lon() == -1000 ) {
// First time through, initialize the system and load all
// relavant tiles
FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 );
FG_LOG( FG_TERRAIN, FG_INFO, " First time through ... " );
FG_LOG( FG_TERRAIN, FG_INFO, " Updating Tile list for " << p1 );
FG_LOG( FG_TERRAIN, FG_INFO, " Loading "
<< tile_diameter * tile_diameter << " tiles" );
// wipe/initialize tile cache
c->init();
// build the local area list and update cache
for ( j = 0; j < tile_diameter; j++ ) {
for ( i = 0; i < tile_diameter; i++ ) {
// fgBucketOffset(&p1, &p2, i - dw, j - dh);
p2 = fgBucketOffset( f->get_Longitude() * RAD_TO_DEG,
f->get_Latitude() * RAD_TO_DEG,
i - dw, j -dh );
fgTileMgrLoadTile( p2, &tiles[(j*tile_diameter) + i]);
}
}
} else {
// We've moved to a new bucket, we need to scroll our
// structures, and load in the new tiles
// CURRENTLY THIS ASSUMES WE CAN ONLY MOVE TO ADJACENT TILES.
// AT ULTRA HIGH SPEEDS THIS ASSUMPTION MAY NOT BE VALID IF
// THE AIRCRAFT CAN SKIP A TILE IN A SINGLE ITERATION.
FG_LOG( FG_TERRAIN, FG_INFO, "Updating Tile list for " << p1 );
if ( (p1.get_lon() > p_last.get_lon()) ||
( (p1.get_lon() == p_last.get_lon()) && (p1.get_x() > p_last.get_x()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" Loading " << tile_diameter << "tiles" );
for ( j = 0; j < tile_diameter; j++ ) {
// scrolling East
for ( i = 0; i < tile_diameter - 1; i++ ) {
tiles[(j*tile_diameter) + i] =
tiles[(j*tile_diameter) + i + 1];
}
// load in new column
// fgBucketOffset(&p_last, &p2, dw + 1, j - dh);
p2 = fgBucketOffset( last_lon, last_lat, dw + 1, j - dh );
fgTileMgrLoadTile( p2, &tiles[(j*tile_diameter) +
tile_diameter - 1]);
}
} else if ( (p1.get_lon() < p_last.get_lon()) ||
( (p1.get_lon() == p_last.get_lon()) && (p1.get_x() < p_last.get_x()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" Loading " << tile_diameter << "tiles" );
for ( j = 0; j < tile_diameter; j++ ) {
// scrolling West
for ( i = tile_diameter - 1; i > 0; i-- ) {
tiles[(j*tile_diameter) + i] =
tiles[(j*tile_diameter) + i - 1];
}
// load in new column
// fgBucketOffset(&p_last, &p2, -dw - 1, j - dh);
p2 = fgBucketOffset( last_lon, last_lat, -dw - 1, j - dh );
fgTileMgrLoadTile( p2, &tiles[(j*tile_diameter) + 0]);
}
}
if ( (p1.get_lat() > p_last.get_lat()) ||
( (p1.get_lat() == p_last.get_lat()) && (p1.get_y() > p_last.get_y()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" Loading " << tile_diameter << "tiles" );
for ( i = 0; i < tile_diameter; i++ ) {
// scrolling North
for ( j = 0; j < tile_diameter - 1; j++ ) {
tiles[(j * tile_diameter) + i] =
tiles[((j+1) * tile_diameter) + i];
}
// load in new column
// fgBucketOffset(&p_last, &p2, i - dw, dh + 1);
p2 = fgBucketOffset( last_lon, last_lat, i - dw, dh + 1);
fgTileMgrLoadTile( p2, &tiles[((tile_diameter-1) *
tile_diameter) + i]);
}
} else if ( (p1.get_lat() < p_last.get_lat()) ||
( (p1.get_lat() == p_last.get_lat()) && (p1.get_y() < p_last.get_y()) ) ) {
FG_LOG( FG_TERRAIN, FG_INFO,
" Loading " << tile_diameter << "tiles" );
for ( i = 0; i < tile_diameter; i++ ) {
// scrolling South
for ( j = tile_diameter - 1; j > 0; j-- ) {
tiles[(j * tile_diameter) + i] =
tiles[((j-1) * tile_diameter) + i];
}
// load in new column
// fgBucketOffset(&p_last, &p2, i - dw, -dh - 1);
p2 = fgBucketOffset( last_lon, last_lat, i - dw, -dh - 1);
fgTileMgrLoadTile( p2, &tiles[0 + i]);
}
}
}
// find our current elevation (feed in the current bucket to save work)
Point3D geod_pos = Point3D( f->get_Longitude(), f->get_Latitude(), 0.0);
Point3D tmp_abs_view_pos = fgGeodToCart(geod_pos);
scenery.cur_elev =
fgTileMgrCurElev( f->get_Longitude(), f->get_Latitude(),
tmp_abs_view_pos );
p_last = p1;
last_lon = f->get_Longitude() * RAD_TO_DEG;
last_lat = f->get_Latitude() * RAD_TO_DEG;
return 1;
}
// Calculate if point/radius is inside view frustum
static int viewable( const Point3D& cp, double radius ) {
int viewable = 1; // start by assuming it's viewable
double x1, y1;
/********************************/
#if defined( USE_FAST_FOV_CLIP ) // views.hxx
/********************************/
MAT3vec eye;
double *mat;
double x, y, z;
x = cp.x();
y = cp.y();
z = cp.z();
mat = (double *)(current_view.get_WORLD_TO_EYE());
eye[2] = x*mat[2] + y*mat[6] + z*mat[10] + mat[14];
// Check near and far clip plane
if( ( eye[2] > radius ) ||
( eye[2] + radius + current_weather.get_visibility() < 0) )
{
return(0);
}
eye[0] = (x*mat[0] + y*mat[4] + z*mat[8] + mat[12])
* current_view.get_slope_x();
// check right and left clip plane (from eye perspective)
x1 = radius * current_view.get_fov_x_clip();
if( (eye[2] > -(eye[0]+x1)) || (eye[2] > (eye[0]-x1)) )
{
return(0);
}
eye[1] = (x*mat[1] + y*mat[5] + z*mat[9] + mat[13])
* current_view.get_slope_y();
// check bottom and top clip plane (from eye perspective)
y1 = radius * current_view.get_fov_y_clip();
if( (eye[2] > -(eye[1]+y1)) || (eye[2] > (eye[1]-y1)) )
{
return(0);
}
/********************************/
#else // DO NOT USE_FAST_FOV_CLIP
/********************************/
fgVIEW *v;
MAT3hvec world, eye;
double x0, slope;
v = &current_view;
MAT3_SET_HVEC(world, cp->x, cp->y, cp->z, 1.0);
// MAT3mult_vec(eye, world, v->WORLD_TO_EYE);
// printf( "\nworld -> eye = %.2f %.2f %.2f radius = %.2f\n",
// eye[0], eye[1], eye[2], radius);
// Use lazy evaluation for calculating eye hvec.
#define vec world
#define mat v->WORLD_TO_EYE
eye[2] = vec[0]*mat[0][2]+vec[1]*mat[1][2]+vec[2]*mat[2][2]+mat[3][2];
// Check near clip plane
if ( eye[2] > radius ) {
return(0);
}
// Check far clip plane
if ( eye[2] + radius < -current_weather.get_visibility() ) {
return(0);
}
// check right clip plane (from eye perspective)
// y = m * (x - x0) = equation of a line intercepting X axis at x0
x1 = v->cos_fov_x * radius;
y1 = v->sin_fov_x * radius;
slope = v->slope_x;
eye[0] = vec[0]*mat[0][0]+vec[1]*mat[1][0]+vec[2]*mat[2][0]+mat[3][0];
if ( eye[2] > ((slope * (eye[0] - x1)) + y1) ) {
return( false );
}
// check left clip plane (from eye perspective)
if ( eye[2] > -((slope * (eye[0] + x1)) - y1) ) {
return( false );
}
// check bottom clip plane (from eye perspective)
x1 = -(v->cos_fov_y) * radius;
y1 = v->sin_fov_y * radius;
slope = v->slope_y;
eye[1] = vec[0]*mat[0][1]+vec[1]*mat[1][1]+vec[2]*mat[2][1]+mat[3][1];
#undef vec
#undef mat
if ( eye[2] > ((slope * (eye[1] - x1)) + y1) ) {
return( false );
}
// check top clip plane (from eye perspective)
if ( eye[2] > -((slope * (eye[1] + x1)) - y1) ) {
return( false );
}
#endif // defined( USE_FAST_FOV_CLIP )
return(viewable);
}
// NEW
// inrange() IS THIS POINT WITHIN POSSIBLE VIEWING RANGE ?
// calculate distance from vertical tangent line at
// current position to center of object.
// this is equivalent to
// dist = point_line_dist_squared( &(t->center), &(v->abs_view_pos),
// v->local_up );
// if ( dist < FG_SQUARE(t->bounding_radius) ) {
//
// the compiler should inline this for us
static int
inrange( const double radius, const Point3D& center, const Point3D& vp,
const MAT3vec up)
{
MAT3vec u, u1, v;
// double tmp;
// u = p - p0
u[0] = center.x() - vp.x();
u[1] = center.y() - vp.y();
u[2] = center.z() - vp.z();
// calculate the projection, u1, of u along d.
// u1 = ( dot_prod(u, d) / dot_prod(d, d) ) * d;
MAT3_SCALE_VEC(u1, up,
(MAT3_DOT_PRODUCT(u, up) / MAT3_DOT_PRODUCT(up, up)) );
// v = u - u1 = vector from closest point on line, p1, to the
// original point, p.
MAT3_SUB_VEC(v, u, u1);
return( FG_SQUARE(radius) >= MAT3_DOT_PRODUCT(v, v));
}
// NEW for legibility
// update this tile's geometry for current view
// The Compiler should inline this
static void
update_tile_geometry( fgTILE *t, GLdouble *MODEL_VIEW)
{
GLdouble *m;
double x, y, z;
// calculate tile offset
t->offset = t->center - scenery.center;
x = t->offset.x();
y = t->offset.y();
z = t->offset.z();
m = t->model_view;
// Calculate the model_view transformation matrix for this tile
FG_MEM_COPY( m, MODEL_VIEW, 16*sizeof(GLdouble) );
// This is equivalent to doing a glTranslatef(x, y, z);
m[12] += (m[0]*x + m[4]*y + m[8] *z);
m[13] += (m[1]*x + m[5]*y + m[9] *z);
m[14] += (m[2]*x + m[6]*y + m[10]*z);
// m[15] += (m[3]*x + m[7]*y + m[11]*z);
// m[3] m7[] m[11] are 0.0 see LookAt() in views.cxx
// so m[15] is unchanged
}
// Render the local tiles
void fgTileMgrRender( void ) {
FGInterface *f;
fgTILECACHE *c;
fgTILE *t;
FGView *v;
Point3D frag_offset;
fgFRAGMENT *frag_ptr;
fgMATERIAL *mtl_ptr;
int i;
int tile_diameter;
int index;
int culled = 0;
int drawn = 0;
c = &global_tile_cache;
f = current_aircraft.fdm_state;
v = &current_view;
tile_diameter = current_options.get_tile_diameter();
// moved to fgTileMgrUpdate, right after we check if we need to
// load additional tiles:
// scenery.cur_elev = fgTileMgrCurElev( FG_Longitude, FG_Latitude,
// v->abs_view_pos );
// initialize the transient per-material fragment lists
material_mgr.init_transient_material_lists();
// Pass 1
// traverse the potentially viewable tile list
for ( i = 0; i < (tile_diameter * tile_diameter); i++ ) {
index = tiles[i];
// fgPrintf( FG_TERRAIN, FG_DEBUG, "Index = %d\n", index);
t = c->get_tile(index);
// calculate tile offset
t->SetOffset( scenery.center );
// Course (tile based) culling
if ( viewable(t->offset, t->bounding_radius) ) {
// at least a portion of this tile could be viewable
// Calculate the model_view transformation matrix for this tile
// This is equivalent to doing a glTranslatef(x, y, z);
t->UpdateViewMatrix( v->get_MODEL_VIEW() );
// xglPushMatrix();
// xglTranslatef(t->offset.x, t->offset.y, t->offset.z);
// traverse fragment list for tile
fgTILE::FragmentIterator current = t->begin();
fgTILE::FragmentIterator last = t->end();
for ( ; current != last; ++current ) {
frag_ptr = &(*current);
if ( frag_ptr->display_list >= 0 ) {
// Fine (fragment based) culling
frag_offset = frag_ptr->center - scenery.center;
if ( viewable(frag_offset, frag_ptr->bounding_radius*2) ) {
// add to transient per-material property fragment list
// frag_ptr->tile_offset.x = t->offset.x;
// frag_ptr->tile_offset.y = t->offset.y;
// frag_ptr->tile_offset.z = t->offset.z;
mtl_ptr = frag_ptr->material_ptr;
// printf(" lookup = %s\n", mtl_ptr->texture_name);
if ( ! mtl_ptr->append_sort_list( frag_ptr ) ) {
FG_LOG( FG_TERRAIN, FG_ALERT,
"Overran material sorting array" );
}
// xglCallList(frag_ptr->display_list);
drawn++;
} else {
// printf("Culled a fragment %.2f %.2f %.2f %.2f\n",
// frag_ptr->center.x, frag_ptr->center.y,
// frag_ptr->center.z, frag_ptr->bounding_radius);
culled++;
}
}
}
// xglPopMatrix();
} else {
culled += t->fragment_list.size();
}
}
if ( (drawn + culled) > 0 ) {
v->set_vfc_ratio( (double)culled / (double)(drawn + culled) );
} else {
v->set_vfc_ratio( 0.0 );
}
// printf("drawn = %d culled = %d saved = %.2f\n", drawn, culled,
// v->vfc_ratio);
// Pass 2
// traverse the transient per-material fragment lists and render
// out all fragments for each material property.
xglPushMatrix();
material_mgr.render_fragments();
xglPopMatrix();
}