1
0
Fork 0
flightgear/utils/GPSsmooth/gps_main.cxx
James Turner 2d5d43a57d Rename GPSsmooth files.
- avoid confusion with GPS instrument files.
2014-03-16 22:35:00 +00:00

491 lines
13 KiB
C++

#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#else
# include <netinet/in.h> // htonl() ntohl()
#endif
#include <iostream>
#include <string>
#include <plib/sg.h>
#include <simgear/io/lowlevel.hxx> // endian tests
#include <simgear/io/raw_socket.hxx>
#include <simgear/timing/timestamp.hxx>
#include <Network/net_ctrls.hxx>
#include <Network/net_fdm.hxx>
#include "GPSsmooth.hxx"
using std::cout;
using std::endl;
using std::string;
// Network channels
static simgear::Socket fdm_sock, ctrls_sock;
// gps data
GPSTrack track;
// Default ports
static int fdm_port = 5505;
static int ctrls_port = 5506;
// Default path
static string file = "";
// Master time counter
float sim_time = 0.0f;
// sim control
SGTimeStamp last_time_stamp;
SGTimeStamp current_time_stamp;
bool inited = false;
// The function htond is defined this way due to the way some
// processors and OSes treat floating point values. Some will raise
// an exception whenever a "bad" floating point value is loaded into a
// floating point register. Solaris is notorious for this, but then
// so is LynxOS on the PowerPC. By translating the data in place,
// there is no need to load a FP register with the "corruped" floating
// point value. By doing the BIG_ENDIAN test, I can optimize the
// routine for big-endian processors so it can be as efficient as
// possible
static void htond (double &x)
{
if ( sgIsLittleEndian() ) {
int *Double_Overlay;
int Holding_Buffer;
Double_Overlay = (int *) &x;
Holding_Buffer = Double_Overlay [0];
Double_Overlay [0] = htonl (Double_Overlay [1]);
Double_Overlay [1] = htonl (Holding_Buffer);
} else {
return;
}
}
// Float version
static void htonf (float &x)
{
if ( sgIsLittleEndian() ) {
int *Float_Overlay;
int Holding_Buffer;
Float_Overlay = (int *) &x;
Holding_Buffer = Float_Overlay [0];
Float_Overlay [0] = htonl (Holding_Buffer);
} else {
return;
}
}
static void gps2fg( const GPSPoint p, FGNetFDM *fdm, FGNetCtrls *ctrls )
{
unsigned int i;
static double last_psi;
static double last_alt;
static double phi_filter = 0.0;
static double theta_filter = 0.0;
// Nan-be-gone
if ( phi_filter != phi_filter ) {
phi_filter = 0.0;
}
if ( theta_filter != theta_filter ) {
theta_filter = 0.0;
}
// Version sanity checking
fdm->version = FG_NET_FDM_VERSION;
// Aero parameters
fdm->longitude = p.lon_deg * SGD_DEGREES_TO_RADIANS;
fdm->latitude = p.lat_deg * SGD_DEGREES_TO_RADIANS;
fdm->altitude = p.altitude_msl;
fdm->agl = -9999.0;
fdm->psi = p.course_true; // heading
double diff = p.course_true - last_psi;
if ( diff < -SGD_PI ) { diff += 2.0*SGD_PI; }
if ( diff > SGD_PI ) { diff -= 2.0*SGD_PI; }
double phi = diff * 100.0;
if ( phi > 0.5*SGD_PI ) { phi = 0.5*SGD_PI; }
if ( phi < -0.5*SGD_PI ) { phi = -0.5*SGD_PI; }
phi_filter = 0.99*phi_filter + 0.01*phi;
fdm->phi = phi_filter;
last_psi = p.course_true;
// cout << p.course_true << endl;
diff = p.altitude_msl - last_alt;
if ( diff < -SGD_PI ) { diff += 2.0*SGD_PI; }
if ( diff > SGD_PI ) { diff -= 2.0*SGD_PI; }
double theta = diff * 2.0;
if ( theta > 0.5*SGD_PI ) { theta = 0.5*SGD_PI; }
if ( theta < -0.5*SGD_PI ) { theta = -0.5*SGD_PI; }
theta_filter = 0.99*theta_filter + 0.01*theta;
fdm->theta = theta_filter;
last_alt = p.altitude_msl;
fdm->phidot = 0.0;
fdm->thetadot = 0.0;
fdm->psidot = 0.0;
fdm->vcas = p.speed_kts;
fdm->climb_rate = 0; // fps
// cout << "climb rate = " << aero->hdota << endl;
fdm->v_north = 0.0;
fdm->v_east = 0.0;
fdm->v_down = 0.0;
fdm->v_body_u = 0.0;
fdm->v_body_v = 0.0;
fdm->v_body_w = 0.0;
fdm->stall_warning = 0.0;
fdm->A_X_pilot = 0.0;
fdm->A_Y_pilot = 0.0;
fdm->A_Z_pilot = 0.0 /* (should be -G) */;
// Engine parameters
fdm->num_engines = 1;
fdm->eng_state[0] = 2;
// cout << "state = " << fdm->eng_state[0] << endl;
double rpm = ((p.speed_kts - 15.0) / 65.0) * 2000.0 + 500.0;
if ( rpm < 0.0 ) { rpm = 0.0; }
if ( rpm > 3000.0 ) { rpm = 3000.0; }
fdm->rpm[0] = rpm;
fdm->fuel_flow[0] = 0.0;
fdm->egt[0] = 0.0;
// cout << "egt = " << aero->EGT << endl;
fdm->oil_temp[0] = 0.0;
fdm->oil_px[0] = 0.0;
// Consumables
fdm->num_tanks = 2;
fdm->fuel_quantity[0] = 0.0;
fdm->fuel_quantity[1] = 0.0;
// Gear and flaps
fdm->num_wheels = 3;
fdm->wow[0] = 0;
fdm->wow[1] = 0;
fdm->wow[2] = 0;
// the following really aren't used in this context
fdm->cur_time = 0;
fdm->warp = 0;
fdm->visibility = 0;
// cout << "Flap deflection = " << aero->dflap << endl;
fdm->left_flap = 0.0;
fdm->right_flap = 0.0;
fdm->elevator = -theta_filter * 5.0;
fdm->elevator_trim_tab = 0.0;
fdm->left_flap = 0.0;
fdm->right_flap = 0.0;
fdm->left_aileron = phi_filter * 1.5;
fdm->right_aileron = phi_filter * 1.5;
fdm->rudder = 0.0;
fdm->nose_wheel = 0.0;
fdm->speedbrake = 0.0;
fdm->spoilers = 0.0;
// Convert the net buffer to network format
fdm->version = htonl(fdm->version);
htond(fdm->longitude);
htond(fdm->latitude);
htond(fdm->altitude);
htonf(fdm->agl);
htonf(fdm->phi);
htonf(fdm->theta);
htonf(fdm->psi);
htonf(fdm->alpha);
htonf(fdm->beta);
htonf(fdm->phidot);
htonf(fdm->thetadot);
htonf(fdm->psidot);
htonf(fdm->vcas);
htonf(fdm->climb_rate);
htonf(fdm->v_north);
htonf(fdm->v_east);
htonf(fdm->v_down);
htonf(fdm->v_body_u);
htonf(fdm->v_body_v);
htonf(fdm->v_body_w);
htonf(fdm->A_X_pilot);
htonf(fdm->A_Y_pilot);
htonf(fdm->A_Z_pilot);
htonf(fdm->stall_warning);
htonf(fdm->slip_deg);
for ( i = 0; i < fdm->num_engines; ++i ) {
fdm->eng_state[i] = htonl(fdm->eng_state[i]);
htonf(fdm->rpm[i]);
htonf(fdm->fuel_flow[i]);
htonf(fdm->egt[i]);
htonf(fdm->cht[i]);
htonf(fdm->mp_osi[i]);
htonf(fdm->tit[i]);
htonf(fdm->oil_temp[i]);
htonf(fdm->oil_px[i]);
}
fdm->num_engines = htonl(fdm->num_engines);
for ( i = 0; i < fdm->num_tanks; ++i ) {
htonf(fdm->fuel_quantity[i]);
}
fdm->num_tanks = htonl(fdm->num_tanks);
for ( i = 0; i < fdm->num_wheels; ++i ) {
fdm->wow[i] = htonl(fdm->wow[i]);
htonf(fdm->gear_pos[i]);
htonf(fdm->gear_steer[i]);
htonf(fdm->gear_compression[i]);
}
fdm->num_wheels = htonl(fdm->num_wheels);
fdm->cur_time = htonl( fdm->cur_time );
fdm->warp = htonl( fdm->warp );
htonf(fdm->visibility);
htonf(fdm->elevator);
htonf(fdm->elevator_trim_tab);
htonf(fdm->left_flap);
htonf(fdm->right_flap);
htonf(fdm->left_aileron);
htonf(fdm->right_aileron);
htonf(fdm->rudder);
htonf(fdm->nose_wheel);
htonf(fdm->speedbrake);
htonf(fdm->spoilers);
}
static void send_data( const GPSPoint p ) {
// int ctrlsize = sizeof( FGNetCtrls );
int fdmsize = sizeof( FGNetFDM );
// cout << "Running main loop" << endl;
FGNetFDM fgfdm;
FGNetCtrls fgctrls;
gps2fg( p, &fgfdm, &fgctrls );
fdm_sock.send(&fgfdm, fdmsize, 0);
}
void usage( const string &argv0 ) {
cout << "Usage: " << argv0 << endl;
cout << "\t[ --help ]" << endl;
cout << "\t[ --file <file_name>" << endl;
cout << "\t[ --hertz <hertz> ]" << endl;
cout << "\t[ --host <hostname> ]" << endl;
cout << "\t[ --broadcast ]" << endl;
cout << "\t[ --fdm-port <fdm output port #> ]" << endl;
cout << "\t[ --ctrls-port <ctrls output port #> ]" << endl;
}
int main( int argc, char **argv ) {
double hertz = 60.0;
string out_host = "localhost";
bool do_broadcast = false;
// process command line arguments
for ( int i = 1; i < argc; ++i ) {
if ( strcmp( argv[i], "--help" ) == 0 ) {
usage( argv[0] );
exit( 0 );
} else if ( strcmp( argv[i], "--hertz" ) == 0 ) {
++i;
if ( i < argc ) {
hertz = atof( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--file" ) == 0 ) {
++i;
if ( i < argc ) {
file = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--host" ) == 0 ) {
++i;
if ( i < argc ) {
out_host = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--broadcast" ) == 0 ) {
do_broadcast = true;
} else if ( strcmp( argv[i], "--fdm-port" ) == 0 ) {
++i;
if ( i < argc ) {
fdm_port = atoi( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--ctrls-port" ) == 0 ) {
++i;
if ( i < argc ) {
ctrls_port = atoi( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else {
usage( argv[0] );
exit( -1 );
}
}
// Load the track data
if ( file == "" ) {
cout << "No track file specified" << endl;
exit(-1);
}
track.load( file );
cout << "Loaded " << track.size() << " records." << endl;
// Setup up outgoing network connections
simgear::Socket::initSockets(); // We must call this before any other net stuff
if ( ! fdm_sock.open( false ) ) { // open a UDP socket
cout << "error opening fdm output socket" << endl;
return -1;
}
if ( ! ctrls_sock.open( false ) ) { // open a UDP socket
cout << "error opening ctrls output socket" << endl;
return -1;
}
cout << "open net channels" << endl;
fdm_sock.setBlocking( false );
ctrls_sock.setBlocking( false );
cout << "blocking false" << endl;
if ( do_broadcast ) {
fdm_sock.setBroadcast( true );
ctrls_sock.setBroadcast( true );
}
if ( fdm_sock.connect( out_host.c_str(), fdm_port ) == -1 ) {
perror("connect");
cout << "error connecting to outgoing fdm port: " << out_host
<< ":" << fdm_port << endl;
return -1;
}
cout << "connected outgoing fdm socket" << endl;
if ( ctrls_sock.connect( out_host.c_str(), ctrls_port ) == -1 ) {
perror("connect");
cout << "error connecting to outgoing ctrls port: " << out_host
<< ":" << ctrls_port << endl;
return -1;
}
cout << "connected outgoing ctrls socket" << endl;
int size = track.size();
double current_time = track.get_point(0).get_time();
cout << "Track begin time is " << current_time << endl;
double end_time = track.get_point(size-1).get_time();
cout << "Track end time is " << end_time << endl;
cout << "Duration = " << end_time - current_time << endl;
double frame_us = 1000000.0 / hertz;
if ( frame_us < 0.0 ) {
frame_us = 0.0;
}
SGTimeStamp start_time;
start_time.stamp();
int count = 0;
GPSPoint p, p0, p1;
p0 = p1 = track.get_point( 0 );
while ( current_time < end_time ) {
// cout << "current_time = " << current_time << " end_time = "
// << end_time << endl;
if ( current_time > p1.get_time() ) {
p0 = p1;
++count;
// cout << "count = " << count << endl;
p1 = track.get_point( count );
}
// cout << "p0 = " << p0.get_time() << " p1 = " << p1.get_time()
// << endl;
double percent;
if ( fabs(p1.get_time() - p0.get_time()) < 0.0001 ) {
percent = 0.0;
} else {
percent =
(current_time - p0.get_time()) /
(p1.get_time() - p0.get_time());
}
// cout << "Percent = " << percent << endl;
GPSPoint p = GPSInterpolate( p0, p1, percent );
// cout << current_time << " " << p0.lat_deg << ", " << p0.lon_deg << endl;
// cout << current_time << " " << p1.lat_deg << ", " << p1.lon_deg << endl;
cout << current_time << " " << p.lat_deg << ", " << p.lon_deg << endl;
send_data( p );
// Update the elapsed time.
static bool first_time = true;
if ( first_time ) {
last_time_stamp.stamp();
first_time = false;
}
current_time_stamp.stamp();
/* Convert to ms */
double elapsed_us = (current_time_stamp - last_time_stamp).toUSecs();
if ( elapsed_us < (frame_us - 2000) ) {
double requested_us = (frame_us - elapsed_us) - 2000 ;
ulMilliSecondSleep ( (int)(requested_us / 1000.0) ) ;
}
current_time_stamp.stamp();
while ( (current_time_stamp - last_time_stamp).toUSecs() < frame_us ) {
current_time_stamp.stamp();
}
current_time += (frame_us / 1000000.0);
last_time_stamp = current_time_stamp;
}
cout << "Processed " << count << " entries in "
<< current_time_stamp - start_time << " seconds." << endl;
return 0;
}