445 lines
13 KiB
C
445 lines
13 KiB
C
/*
|
|
* sunpos.c
|
|
* kirk johnson
|
|
* july 1993
|
|
*
|
|
* code for calculating the position on the earth's surface for which
|
|
* the sun is directly overhead (adapted from _practical astronomy
|
|
* with your calculator, third edition_, peter duffett-smith,
|
|
* cambridge university press, 1988.)
|
|
*
|
|
* RCS $Id$
|
|
*
|
|
* Copyright (C) 1989, 1990, 1993, 1994, 1995 Kirk Lauritz Johnson
|
|
*
|
|
* Parts of the source code (as marked) are:
|
|
* Copyright (C) 1989, 1990, 1991 by Jim Frost
|
|
* Copyright (C) 1992 by Jamie Zawinski <jwz@lucid.com>
|
|
*
|
|
* Permission to use, copy, modify and freely distribute xearth for
|
|
* non-commercial and not-for-profit purposes is hereby granted
|
|
* without fee, provided that both the above copyright notice and this
|
|
* permission notice appear in all copies and in supporting
|
|
* documentation.
|
|
*
|
|
* The author makes no representations about the suitability of this
|
|
* software for any purpose. It is provided "as is" without express or
|
|
* implied warranty.
|
|
*
|
|
* THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS,
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT
|
|
* OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
|
|
* NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $Id$
|
|
* (Log is kept at end of this file)
|
|
*/
|
|
|
|
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
|
|
#include "sunpos.h"
|
|
#include "fg_time.h"
|
|
#include "../Include/constants.h"
|
|
#include "../Main/views.h"
|
|
#include "../Math/fg_geodesy.h"
|
|
#include "../Math/mat3.h"
|
|
#include "../Math/polar.h"
|
|
|
|
|
|
#undef E
|
|
|
|
|
|
/*
|
|
* the epoch upon which these astronomical calculations are based is
|
|
* 1990 january 0.0, 631065600 seconds since the beginning of the
|
|
* "unix epoch" (00:00:00 GMT, Jan. 1, 1970)
|
|
*
|
|
* given a number of seconds since the start of the unix epoch,
|
|
* DaysSinceEpoch() computes the number of days since the start of the
|
|
* astronomical epoch (1990 january 0.0)
|
|
*/
|
|
|
|
#define EpochStart (631065600)
|
|
#define DaysSinceEpoch(secs) (((secs)-EpochStart)*(1.0/(24*3600)))
|
|
|
|
/*
|
|
* assuming the apparent orbit of the sun about the earth is circular,
|
|
* the rate at which the orbit progresses is given by RadsPerDay --
|
|
* FG_2PI radians per orbit divided by 365.242191 days per year:
|
|
*/
|
|
|
|
#define RadsPerDay (FG_2PI/365.242191)
|
|
|
|
/*
|
|
* details of sun's apparent orbit at epoch 1990.0 (after
|
|
* duffett-smith, table 6, section 46)
|
|
*
|
|
* Epsilon_g (ecliptic longitude at epoch 1990.0) 279.403303 degrees
|
|
* OmegaBar_g (ecliptic longitude of perigee) 282.768422 degrees
|
|
* Eccentricity (eccentricity of orbit) 0.016713
|
|
*/
|
|
|
|
#define Epsilon_g (279.403303*(FG_2PI/360))
|
|
#define OmegaBar_g (282.768422*(FG_2PI/360))
|
|
#define Eccentricity (0.016713)
|
|
|
|
/*
|
|
* MeanObliquity gives the mean obliquity of the earth's axis at epoch
|
|
* 1990.0 (computed as 23.440592 degrees according to the method given
|
|
* in duffett-smith, section 27)
|
|
*/
|
|
#define MeanObliquity (23.440592*(FG_2PI/360))
|
|
|
|
static double solve_keplers_equation(double);
|
|
static double sun_ecliptic_longitude(time_t);
|
|
static void ecliptic_to_equatorial(double, double, double *, double *);
|
|
static double julian_date(int, int, int);
|
|
static double GST(time_t);
|
|
|
|
/*
|
|
* solve Kepler's equation via Newton's method
|
|
* (after duffett-smith, section 47)
|
|
*/
|
|
static double solve_keplers_equation(double M) {
|
|
double E;
|
|
double delta;
|
|
|
|
E = M;
|
|
while (1) {
|
|
delta = E - Eccentricity*sin(E) - M;
|
|
if (fabs(delta) <= 1e-10) break;
|
|
E -= delta / (1 - Eccentricity*cos(E));
|
|
}
|
|
|
|
return E;
|
|
}
|
|
|
|
|
|
/* compute ecliptic longitude of sun (in radians) (after
|
|
* duffett-smith, section 47) */
|
|
|
|
static double sun_ecliptic_longitude(time_t ssue) {
|
|
/* time_t ssue; seconds since unix epoch */
|
|
double D, N;
|
|
double M_sun, E;
|
|
double v;
|
|
|
|
D = DaysSinceEpoch(ssue);
|
|
|
|
N = RadsPerDay * D;
|
|
N = fmod(N, FG_2PI);
|
|
if (N < 0) N += FG_2PI;
|
|
|
|
M_sun = N + Epsilon_g - OmegaBar_g;
|
|
if (M_sun < 0) M_sun += FG_2PI;
|
|
|
|
E = solve_keplers_equation(M_sun);
|
|
v = 2 * atan(sqrt((1+Eccentricity)/(1-Eccentricity)) * tan(E/2));
|
|
|
|
return (v + OmegaBar_g);
|
|
}
|
|
|
|
|
|
/* convert from ecliptic to equatorial coordinates (after
|
|
* duffett-smith, section 27) */
|
|
|
|
static void ecliptic_to_equatorial(double lambda, double beta,
|
|
double *alpha, double *delta) {
|
|
/* double lambda; ecliptic longitude */
|
|
/* double beta; ecliptic latitude */
|
|
/* double *alpha; (return) right ascension */
|
|
/* double *delta; (return) declination */
|
|
|
|
double sin_e, cos_e;
|
|
|
|
sin_e = sin(MeanObliquity);
|
|
cos_e = cos(MeanObliquity);
|
|
|
|
*alpha = atan2(sin(lambda)*cos_e - tan(beta)*sin_e, cos(lambda));
|
|
*delta = asin(sin(beta)*cos_e + cos(beta)*sin_e*sin(lambda));
|
|
}
|
|
|
|
|
|
/* computing julian dates (assuming gregorian calendar, thus this is
|
|
* only valid for dates of 1582 oct 15 or later) (after duffett-smith,
|
|
* section 4) */
|
|
|
|
static double julian_date(int y, int m, int d) {
|
|
/* int y; year (e.g. 19xx) */
|
|
/* int m; month (jan=1, feb=2, ...) */
|
|
/* int d; day of month */
|
|
|
|
int A, B, C, D;
|
|
double JD;
|
|
|
|
/* lazy test to ensure gregorian calendar */
|
|
if (y < 1583) {
|
|
printf("WHOOPS! Julian dates only valid for 1582 oct 15 or later\n");
|
|
}
|
|
|
|
if ((m == 1) || (m == 2)) {
|
|
y -= 1;
|
|
m += 12;
|
|
}
|
|
|
|
A = y / 100;
|
|
B = 2 - A + (A / 4);
|
|
C = 365.25 * y;
|
|
D = 30.6001 * (m + 1);
|
|
|
|
JD = B + C + D + d + 1720994.5;
|
|
|
|
return JD;
|
|
}
|
|
|
|
|
|
/* compute greenwich mean sidereal time (GST) corresponding to a given
|
|
* number of seconds since the unix epoch (after duffett-smith,
|
|
* section 12) */
|
|
static double GST(time_t ssue) {
|
|
/* time_t ssue; seconds since unix epoch */
|
|
|
|
double JD;
|
|
double T, T0;
|
|
double UT;
|
|
struct tm *tm;
|
|
|
|
tm = gmtime(&ssue);
|
|
|
|
JD = julian_date(tm->tm_year+1900, tm->tm_mon+1, tm->tm_mday);
|
|
T = (JD - 2451545) / 36525;
|
|
|
|
T0 = ((T + 2.5862e-5) * T + 2400.051336) * T + 6.697374558;
|
|
|
|
T0 = fmod(T0, 24.0);
|
|
if (T0 < 0) T0 += 24;
|
|
|
|
UT = tm->tm_hour + (tm->tm_min + tm->tm_sec / 60.0) / 60.0;
|
|
|
|
T0 += UT * 1.002737909;
|
|
T0 = fmod(T0, 24.0);
|
|
if (T0 < 0) T0 += 24;
|
|
|
|
return T0;
|
|
}
|
|
|
|
|
|
/* given a particular time (expressed in seconds since the unix
|
|
* epoch), compute position on the earth (lat, lon) such that sun is
|
|
* directly overhead. (lat, lon are reported in radians */
|
|
|
|
void fgSunPosition(time_t ssue, double *lon, double *lat) {
|
|
/* time_t ssue; seconds since unix epoch */
|
|
/* double *lat; (return) latitude */
|
|
/* double *lon; (return) longitude */
|
|
|
|
double lambda;
|
|
double alpha, delta;
|
|
double tmp;
|
|
|
|
lambda = sun_ecliptic_longitude(ssue);
|
|
ecliptic_to_equatorial(lambda, 0.0, &alpha, &delta);
|
|
|
|
tmp = alpha - (FG_2PI/24)*GST(ssue);
|
|
if (tmp < -FG_PI) {
|
|
do tmp += FG_2PI;
|
|
while (tmp < -FG_PI);
|
|
} else if (tmp > FG_PI) {
|
|
do tmp -= FG_2PI;
|
|
while (tmp < -FG_PI);
|
|
}
|
|
|
|
*lon = tmp;
|
|
*lat = delta;
|
|
}
|
|
|
|
|
|
/* update the cur_time_params structure with the current sun position */
|
|
void fgUpdateSunPos() {
|
|
struct fgLIGHT *l;
|
|
struct fgTIME *t;
|
|
struct fgVIEW *v;
|
|
MAT3vec nup, nsun;
|
|
/* if the 4th field is 0.0, this specifies a direction ... */
|
|
GLfloat white[4] = { 1.0, 1.0, 1.0, 1.0 };
|
|
/* base sky color */
|
|
GLfloat base_sky_color[4] = {0.60, 0.60, 0.90, 1.0};
|
|
/* base fog color */
|
|
GLfloat base_fog_color[4] = {0.70, 0.70, 0.70, 1.0};
|
|
double sun_gd_lat, sl_radius, temp;
|
|
double x_2, x_4, x_8, x_10;
|
|
double light, ambient, diffuse, sky_brightness;
|
|
static int time_warp = 0;
|
|
|
|
l = &cur_light_params;
|
|
t = &cur_time_params;
|
|
v = ¤t_view;
|
|
|
|
printf(" Updating Sun position\n");
|
|
|
|
time_warp += 0; /* increase this to make the world spin real fast */
|
|
|
|
fgSunPosition(t->cur_time + time_warp, &l->sun_lon, &sun_gd_lat);
|
|
|
|
fgGeodToGeoc(sun_gd_lat, 0.0, &sl_radius, &l->sun_gc_lat);
|
|
|
|
l->fg_sunpos = fgPolarToCart(l->sun_lon, l->sun_gc_lat, sl_radius);
|
|
|
|
/* printf(" Geodetic lat = %.5f Geocentric lat = %.5f\n", sun_gd_lat,
|
|
t->sun_gc_lat); */
|
|
|
|
/* FALSE! (?> the sun position has to be translated just like
|
|
* everything else */
|
|
/* l->sun_vec_inv[0] = l->fg_sunpos.x - scenery_center.x; */
|
|
/* l->sun_vec_inv[1] = l->fg_sunpos.y - scenery_center.y; */
|
|
/* l->sun_vec_inv[2] = l->fg_sunpos.z - scenery_center.z; */
|
|
/* MAT3_SCALE_VEC(l->sun_vec, l->sun_vec_inv, -1.0); */
|
|
|
|
/* I think this will work better for generating the sun light vector */
|
|
l->sun_vec[0] = l->fg_sunpos.x;
|
|
l->sun_vec[1] = l->fg_sunpos.y;
|
|
l->sun_vec[2] = l->fg_sunpos.z;
|
|
MAT3_NORMALIZE_VEC(l->sun_vec, temp);
|
|
MAT3_SCALE_VEC(l->sun_vec_inv, l->sun_vec, -1.0);
|
|
|
|
/* make these are directional light sources only */
|
|
l->sun_vec[3] = 0.0;
|
|
l->sun_vec_inv[3] = 0.0;
|
|
|
|
printf(" l->sun_vec = %.2f %.2f %.2f\n", l->sun_vec[0], l->sun_vec[1],
|
|
l->sun_vec[2]);
|
|
|
|
/* calculate the sun's relative angle to local up */
|
|
MAT3_COPY_VEC(nup, v->local_up);
|
|
nsun[0] = l->fg_sunpos.x;
|
|
nsun[1] = l->fg_sunpos.y;
|
|
nsun[2] = l->fg_sunpos.z;
|
|
MAT3_NORMALIZE_VEC(nup, temp);
|
|
MAT3_NORMALIZE_VEC(nsun, temp);
|
|
|
|
l->sun_angle = acos(MAT3_DOT_PRODUCT(nup, nsun));
|
|
printf(" SUN ANGLE relative to current location = %.3f rads.\n",
|
|
l->sun_angle);
|
|
|
|
/* calculate lighting parameters based on sun's relative angle to
|
|
* local up */
|
|
/* ya kind'a have to plot this to see how it works */
|
|
|
|
/* x = t->sun_angle^8 */
|
|
x_2 = l->sun_angle * l->sun_angle;
|
|
x_4 = x_2 * x_2;
|
|
x_8 = x_4 * x_4;
|
|
x_10 = x_8 * x_2;
|
|
|
|
light = pow(1.1, -x_10 / 30.0);
|
|
ambient = 0.2 * light;
|
|
diffuse = 0.9 * light;
|
|
|
|
sky_brightness = 0.85 * pow(1.2, -x_8 / 20.0) + 0.15;
|
|
|
|
/* sky_brightness = 0.15; */ /* to force a dark sky (for testing) */
|
|
|
|
if ( ambient < 0.02 ) { ambient = 0.02; }
|
|
if ( diffuse < 0.0 ) { diffuse = 0.0; }
|
|
|
|
if ( sky_brightness < 0.1 ) { sky_brightness = 0.1; }
|
|
|
|
l->scene_ambient[0] = white[0] * ambient;
|
|
l->scene_ambient[1] = white[1] * ambient;
|
|
l->scene_ambient[2] = white[2] * ambient;
|
|
|
|
l->scene_diffuse[0] = white[0] * diffuse;
|
|
l->scene_diffuse[1] = white[1] * diffuse;
|
|
l->scene_diffuse[2] = white[2] * diffuse;
|
|
|
|
/* set fog color */
|
|
l->fog_color[0] = base_fog_color[0] * (ambient + diffuse);
|
|
l->fog_color[1] = base_fog_color[1] * (ambient + diffuse);
|
|
l->fog_color[2] = base_fog_color[2] * (ambient + diffuse);
|
|
l->fog_color[3] = base_fog_color[3];
|
|
|
|
/* set sky color */
|
|
l->sky_color[0] = base_sky_color[0] * sky_brightness;
|
|
l->sky_color[1] = base_sky_color[1] * sky_brightness;
|
|
l->sky_color[2] = base_sky_color[2] * sky_brightness;
|
|
l->sky_color[3] = base_sky_color[3];
|
|
}
|
|
|
|
|
|
/* $Log$
|
|
/* Revision 1.21 1997/12/30 23:10:19 curt
|
|
/* Calculate lighting parameters here.
|
|
/*
|
|
* Revision 1.20 1997/12/30 22:22:43 curt
|
|
* Further integration of event manager.
|
|
*
|
|
* Revision 1.19 1997/12/30 20:47:59 curt
|
|
* Integrated new event manager with subsystem initializations.
|
|
*
|
|
* Revision 1.18 1997/12/23 04:58:40 curt
|
|
* Tweaked the sky coloring a bit to build in structures to allow finer rgb
|
|
* control.
|
|
*
|
|
* Revision 1.17 1997/12/15 23:55:08 curt
|
|
* Add xgl wrappers for debugging.
|
|
* Generate terrain normals on the fly.
|
|
*
|
|
* Revision 1.16 1997/12/11 04:43:57 curt
|
|
* Fixed sun vector and lighting problems. I thing the moon is now lit
|
|
* correctly.
|
|
*
|
|
* Revision 1.15 1997/12/10 22:37:55 curt
|
|
* Prepended "fg" on the name of all global structures that didn't have it yet.
|
|
* i.e. "struct WEATHER {}" became "struct fgWEATHER {}"
|
|
*
|
|
* Revision 1.14 1997/12/09 04:25:39 curt
|
|
* Working on adding a global lighting params structure.
|
|
*
|
|
* Revision 1.13 1997/11/25 19:25:42 curt
|
|
* Changes to integrate Durk's moon/sun code updates + clean up.
|
|
*
|
|
* Revision 1.12 1997/11/15 18:15:39 curt
|
|
* Reverse direction of sun vector, so object normals can be more normal.
|
|
*
|
|
* Revision 1.11 1997/10/28 21:07:21 curt
|
|
* Changed GLUT/ -> Main/
|
|
*
|
|
* Revision 1.10 1997/09/13 02:00:09 curt
|
|
* Mostly working on stars and generating sidereal time for accurate star
|
|
* placement.
|
|
*
|
|
* Revision 1.9 1997/09/05 14:17:31 curt
|
|
* More tweaking with stars.
|
|
*
|
|
* Revision 1.8 1997/09/05 01:36:04 curt
|
|
* Working on getting stars right.
|
|
*
|
|
* Revision 1.7 1997/09/04 02:17:40 curt
|
|
* Shufflin' stuff.
|
|
*
|
|
* Revision 1.6 1997/08/27 03:30:37 curt
|
|
* Changed naming scheme of basic shared structures.
|
|
*
|
|
* Revision 1.5 1997/08/22 21:34:41 curt
|
|
* Doing a bit of reorganizing and house cleaning.
|
|
*
|
|
* Revision 1.4 1997/08/19 23:55:09 curt
|
|
* Worked on better simulating real lighting.
|
|
*
|
|
* Revision 1.3 1997/08/13 20:23:49 curt
|
|
* The interface to sunpos now updates a global structure rather than returning
|
|
* current sun position.
|
|
*
|
|
* Revision 1.2 1997/08/06 00:24:32 curt
|
|
* Working on correct real time sun lighting.
|
|
*
|
|
* Revision 1.1 1997/08/01 15:27:56 curt
|
|
* Initial revision.
|
|
*
|
|
*/
|