1
0
Fork 0
flightgear/src/FDM/flight.cxx
Bertrand Coconnier 96df6689e6 Added the computation of the wake of all AI aircrafts.
Wake computations are now performed for all AI aircrafts within a range lower or equal to the value indicated by the property /fdm/ai-wake/max-radius-nm.

These computations are triggered by the property /fdm/ai-wake/enabled (it is disabled by default).

The result of the wake computations is not yet used by the FDMs so do not expect the user aircraft to react to the AI wake.
2017-06-10 21:13:20 +02:00

931 lines
34 KiB
C++

// flight.cxx -- a general interface to the various flight models
//
// Written by Curtis Olson, started May 1997.
//
// Copyright (C) 1997 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "flight.hxx"
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/timing/timestamp.hxx>
#include <simgear/scene/material/mat.hxx>
#include <simgear/io/iochannel.hxx>
#include <Scenery/scenery.hxx>
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include <FDM/groundcache.hxx>
static inline void assign(double* ptr, const SGVec3d& vec)
{
ptr[0] = vec[0];
ptr[1] = vec[1];
ptr[2] = vec[2];
}
// Constructor
FGInterface::FGInterface()
{
_setup();
}
FGInterface::FGInterface( double dt )
{
_setup();
}
// Destructor
FGInterface::~FGInterface() {
// unbind(); // FIXME: should be called explicitly
}
int
FGInterface::_calc_multiloop (double dt)
{
if (dt == 0.0) {
return 0; // paused
}
// this method is now obsolete - multiloop is handled by
// SGSubsystemGroup; the FDM group operates with a fixed time interval
// (defined by /sim/model-hz), so at this level we always want to run
// exactly one FDM iteration
return 1;
}
/**
* Set default values for the state of the FDM.
*
* This method is invoked by the constructors.
*/
void
FGInterface::_setup ()
{
inited = false;
bound = false;
_state.d_cg_rp_body_v = SGVec3d::zeros();
_state.v_dot_local_v = SGVec3d::zeros();
_state.v_dot_body_v = SGVec3d::zeros();
_state.a_cg_body_v = SGVec3d::zeros();
_state.a_pilot_body_v = SGVec3d::zeros();
_state.n_cg_body_v = SGVec3d::zeros();
_state.v_local_v = SGVec3d::zeros();
_state.v_local_rel_ground_v = SGVec3d::zeros();
_state.v_local_airmass_v = SGVec3d::zeros();
_state.v_body_v = SGVec3d::zeros();
_state.omega_body_v = SGVec3d::zeros();
_state.euler_rates_v = SGVec3d::zeros();
_state.geocentric_rates_v = SGVec3d::zeros();
_state.geodetic_position_v = SGGeod::fromRadM(0, 0, 0);
_state.cartesian_position_v = SGVec3d::fromGeod(_state.geodetic_position_v);
_state.geocentric_position_v = SGGeoc::fromCart(_state.cartesian_position_v);
_state.euler_angles_v = SGVec3d::zeros();
_state.nlf=0;
_state.v_rel_wind=_state.v_true_kts=0;
_state.v_ground_speed=_state.v_equiv_kts=0;
_state.v_calibrated_kts=0;
_state.alpha=_state.beta=0;
_state.gamma_vert_rad=0;
_state.density=_state.mach_number=0;
_state.static_pressure=_state.total_pressure=0;
_state.dynamic_pressure=0;
_state.static_temperature=_state.total_temperature=0;
_state.sea_level_radius=_state.earth_position_angle=0;
_state.runway_altitude=0;
_state.climb_rate=0;
_state.altitude_agl=0;
_state.track=0;
}
void
FGInterface::init () {}
/**
* Initialize the state of the FDM.
*
* Subclasses of FGInterface may do their own, additional initialization,
* but there is some that is common to all. Normally, they should call
* this before they begin their own init to make sure the basic structures
* are set up properly.
*/
void
FGInterface::common_init ()
{
SG_LOG( SG_FLIGHT, SG_INFO, "Start common FDM init" );
set_inited( true );
ground_cache.set_cache_time_offset(globals->get_sim_time_sec());
// Set initial position
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing position..." );
double lon = fgGetDouble("/sim/presets/longitude-deg")
* SGD_DEGREES_TO_RADIANS;
double lat = fgGetDouble("/sim/presets/latitude-deg")
* SGD_DEGREES_TO_RADIANS;
double alt_ft = fgGetDouble("/sim/presets/altitude-ft");
double alt_m = alt_ft * SG_FEET_TO_METER;
set_Longitude( lon );
set_Latitude( lat );
SG_LOG( SG_FLIGHT, SG_INFO, "Checking for lon = "
<< lon*SGD_RADIANS_TO_DEGREES << "deg, lat = "
<< lat*SGD_RADIANS_TO_DEGREES << "deg, alt = "
<< alt_ft << "ft");
double ground_elev_m = get_groundlevel_m(lat, lon, alt_m);
double ground_elev_ft = ground_elev_m * SG_METER_TO_FEET;
_set_Runway_altitude ( ground_elev_ft );
// Set aircraft altitude
if ( fgGetBool("/sim/presets/onground") || alt_ft < ground_elev_ft ) {
fgSetDouble("/position/altitude-ft", ground_elev_ft + 0.1);
set_Altitude( ground_elev_ft + 0.1);
} else {
set_Altitude( alt_ft );
}
// Set ground elevation
SG_LOG( SG_FLIGHT, SG_INFO,
"...initializing ground elevation to " << ground_elev_ft
<< "ft..." );
// Set sea-level radius
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing sea-level radius..." );
SG_LOG( SG_FLIGHT, SG_INFO, " lat = "
<< fgGetDouble("/sim/presets/latitude-deg")
<< " alt = " << get_Altitude() );
double slr = SGGeodesy::SGGeodToSeaLevelRadius(_state.geodetic_position_v);
_set_Sea_level_radius( slr * SG_METER_TO_FEET );
// Set initial Euler angles
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing Euler angles..." );
set_Euler_Angles( fgGetDouble("/sim/presets/roll-deg")
* SGD_DEGREES_TO_RADIANS,
fgGetDouble("/sim/presets/pitch-deg")
* SGD_DEGREES_TO_RADIANS,
fgGetDouble("/sim/presets/heading-deg")
* SGD_DEGREES_TO_RADIANS );
// Set initial velocities
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing velocities..." );
if ( !fgHasNode("/sim/presets/speed-set") ) {
set_V_calibrated_kts(0.0);
} else {
const std::string speedset = fgGetString("/sim/presets/speed-set");
if ( speedset == "knots" || speedset == "KNOTS" ) {
set_V_calibrated_kts( fgGetDouble("/sim/presets/airspeed-kt") );
} else if ( speedset == "mach" || speedset == "MACH" ) {
set_Mach_number( fgGetDouble("/sim/presets/mach") );
} else if ( speedset == "UVW" || speedset == "uvw" ) {
set_Velocities_Body(
fgGetDouble("/sim/presets/uBody-fps"),
fgGetDouble("/sim/presets/vBody-fps"),
fgGetDouble("/sim/presets/wBody-fps") );
} else if ( speedset == "NED" || speedset == "ned" ) {
set_Velocities_Local(
fgGetDouble("/sim/presets/speed-north-fps"),
fgGetDouble("/sim/presets/speed-east-fps"),
fgGetDouble("/sim/presets/speed-down-fps") );
} else {
SG_LOG( SG_FLIGHT, SG_ALERT,
"Unrecognized value for /sim/presets/speed-set: "
<< speedset);
set_V_calibrated_kts( 0.0 );
}
}
if ( fgHasNode("/sim/presets/glideslope-deg") )
set_Gamma_vert_rad( fgGetDouble("/sim/presets/glideslope-deg")
* SGD_DEGREES_TO_RADIANS );
else if ( fgHasNode("/sim/presets/speed-set") &&
fgHasNode( "/sim/presets/vertical-speed-fps") )
{
set_Climb_Rate( fgGetDouble("/sim/presets/vertical-speed-fps") );
}
reset_wake_group();
SG_LOG( SG_FLIGHT, SG_INFO, "End common FDM init" );
}
/**
* Bind getters and setters to properties.
*
* The bind() method will be invoked after init(). Note that unlike
* the usual implementations of FGSubsystem::bind(), this method does
* not automatically pick up existing values for the properties at
* bind time; instead, all values are set explicitly in the init()
* method.
*/
void
FGInterface::bind ()
{
bound = true;
_tiedProperties.setRoot(globals->get_props());
// Aircraft position
_tiedProperties.Tie("/position/latitude-deg", this,
&FGInterface::get_Latitude_deg,
&FGInterface::set_Latitude_deg,
false);
fgSetArchivable("/position/latitude-deg");
_tiedProperties.Tie("/position/longitude-deg", this,
&FGInterface::get_Longitude_deg,
&FGInterface::set_Longitude_deg,
false);
fgSetArchivable("/position/longitude-deg");
_tiedProperties.Tie("/position/altitude-ft", this,
&FGInterface::get_Altitude,
&FGInterface::set_Altitude,
false);
fgSetArchivable("/position/altitude-ft");
_tiedProperties.Tie("/position/altitude-agl-ft", this,
&FGInterface::get_Altitude_AGL, &FGInterface::set_AltitudeAGL, false);
fgSetArchivable("/position/ground-elev-ft");
_tiedProperties.Tie("/position/ground-elev-ft", this,
&FGInterface::get_Runway_altitude); // read-only
fgSetArchivable("/position/ground-elev-m");
_tiedProperties.Tie("/position/ground-elev-m", this,
&FGInterface::get_Runway_altitude_m); // read-only
_tiedProperties.Tie("/environment/ground-elevation-m", this,
&FGInterface::get_Runway_altitude_m); // read-only
fgSetArchivable("/position/sea-level-radius-ft");
_tiedProperties.Tie("/position/sea-level-radius-ft", this,
&FGInterface::get_Sea_level_radius,
&FGInterface::_set_Sea_level_radius, false);
// Orientation
_tiedProperties.Tie("/orientation/roll-deg", this,
&FGInterface::get_Phi_deg,
&FGInterface::set_Phi_deg, false);
fgSetArchivable("/orientation/roll-deg");
_tiedProperties.Tie("/orientation/pitch-deg", this,
&FGInterface::get_Theta_deg,
&FGInterface::set_Theta_deg, false);
fgSetArchivable("/orientation/pitch-deg");
_tiedProperties.Tie("/orientation/heading-deg", this,
&FGInterface::get_Psi_deg,
&FGInterface::set_Psi_deg, false);
fgSetArchivable("/orientation/heading-deg");
_tiedProperties.Tie("/orientation/track-deg", this,
&FGInterface::get_Track); // read-only
_tiedProperties.Tie("/orientation/path-deg", this,
&FGInterface::get_Path); // read-only
// Body-axis "euler rates" (rotation speed, but in a funny
// representation).
_tiedProperties.Tie("/orientation/roll-rate-degps", this,
&FGInterface::get_Phi_dot_degps,
&FGInterface::set_Phi_dot_degps, false);
_tiedProperties.Tie("/orientation/pitch-rate-degps", this,
&FGInterface::get_Theta_dot_degps,
&FGInterface::set_Theta_dot_degps, false);
_tiedProperties.Tie("/orientation/yaw-rate-degps", this,
&FGInterface::get_Psi_dot_degps,
&FGInterface::set_Psi_dot_degps, false);
_tiedProperties.Tie("/orientation/p-body", this, &FGInterface::get_P_body); // read-only
_tiedProperties.Tie("/orientation/q-body", this, &FGInterface::get_Q_body); // read-only
_tiedProperties.Tie("/orientation/r-body", this, &FGInterface::get_R_body); // read-only
// Ground speed knots
_tiedProperties.Tie("/velocities/groundspeed-kt", this,
&FGInterface::get_V_ground_speed_kt,
&FGInterface::set_V_ground_speed_kt); // read-only
// Calibrated airspeed
_tiedProperties.Tie("/velocities/airspeed-kt", this,
&FGInterface::get_V_calibrated_kts,
&FGInterface::set_V_calibrated_kts,
false);
_tiedProperties.Tie("/velocities/equivalent-kt", this,
&FGInterface::get_V_equiv_kts); // read-only
// Mach number
_tiedProperties.Tie("/velocities/mach", this,
&FGInterface::get_Mach_number,
&FGInterface::set_Mach_number,
false);
// Local velocities
// _tiedProperties.Tie("/velocities/speed-north-fps", this,
// &FGInterface::get_V_north,
// &FGInterface::set_V_north);
// fgSetArchivable("/velocities/speed-north-fps");
// _tiedProperties.Tie("/velocities/speed-east-fps", this,
// &FGInterface::get_V_east,
// &FGInterface::set_V_east);
// fgSetArchivable("/velocities/speed-east-fps");
// _tiedProperties.Tie("/velocities/speed-down-fps", this,
// &FGInterface::get_V_down,
// &FGInterface::set_V_down);
// fgSetArchivable("/velocities/speed-down-fps");
// FIXME: Temporarily read-only, until the
// incompatibilities between JSBSim and
// LaRCSim are fixed (LaRCSim adds the
// earth's rotation to the east velocity).
_tiedProperties.Tie("/velocities/speed-north-fps", this,
&FGInterface::get_V_north, &FGInterface::set_V_north, false);
_tiedProperties.Tie("/velocities/speed-east-fps", this,
&FGInterface::get_V_east, &FGInterface::set_V_east, false);
_tiedProperties.Tie("/velocities/speed-down-fps", this,
&FGInterface::get_V_down, &FGInterface::set_V_down, false);
_tiedProperties.Tie("/velocities/north-relground-fps", this,
&FGInterface::get_V_north_rel_ground); // read-only
_tiedProperties.Tie("/velocities/east-relground-fps", this,
&FGInterface::get_V_east_rel_ground); // read-only
_tiedProperties.Tie("/velocities/down-relground-fps", this,
&FGInterface::get_V_down_rel_ground); // read-only
// ECEF velocity in body axis
// FIXME: temporarily archivable, until the NED problem is fixed.
_tiedProperties.Tie("/velocities/uBody-fps", this,
&FGInterface::get_uBody,
&FGInterface::set_uBody,
false);
fgSetArchivable("/velocities/uBody-fps");
_tiedProperties.Tie("/velocities/vBody-fps", this,
&FGInterface::get_vBody,
&FGInterface::set_vBody,
false);
fgSetArchivable("/velocities/vBody-fps");
_tiedProperties.Tie("/velocities/wBody-fps", this,
&FGInterface::get_wBody,
&FGInterface::set_wBody,
false);
fgSetArchivable("/velocities/wBody-fps");
// Climb and slip (read-only)
_tiedProperties.Tie("/velocities/vertical-speed-fps", this,
&FGInterface::get_Climb_Rate,
&FGInterface::set_Climb_Rate, false );
_tiedProperties.Tie("/velocities/glideslope", this,
&FGInterface::get_Gamma_vert_rad,
&FGInterface::set_Gamma_vert_rad, false );
_tiedProperties.Tie("/orientation/side-slip-rad", this,
&FGInterface::get_Beta, &FGInterface::_set_Beta, false);
_tiedProperties.Tie("/orientation/side-slip-deg", this,
&FGInterface::get_Beta_deg); // read-only
_tiedProperties.Tie("/orientation/alpha-deg", this,
&FGInterface::get_Alpha_deg, &FGInterface::set_Alpha_deg, false);
_tiedProperties.Tie("/accelerations/nlf", this,
&FGInterface::get_Nlf); // read-only
// NED accelerations
_tiedProperties.Tie("/accelerations/ned/north-accel-fps_sec",
this, &FGInterface::get_V_dot_north); // read-only
_tiedProperties.Tie("/accelerations/ned/east-accel-fps_sec",
this, &FGInterface::get_V_dot_east); // read-only
_tiedProperties.Tie("/accelerations/ned/down-accel-fps_sec",
this, &FGInterface::get_V_dot_down); // read-only
// Pilot accelerations
_tiedProperties.Tie("/accelerations/pilot/x-accel-fps_sec",
this, &FGInterface::get_A_X_pilot, &FGInterface::set_A_X_pilot, false);
_tiedProperties.Tie("/accelerations/pilot/y-accel-fps_sec",
this, &FGInterface::get_A_Y_pilot, &FGInterface::set_A_Y_pilot, false);
_tiedProperties.Tie("/accelerations/pilot/z-accel-fps_sec",
this, &FGInterface::get_A_Z_pilot, &FGInterface::set_A_Z_pilot, false);
_tiedProperties.Tie("/accelerations/n-z-cg-fps_sec",
this, &FGInterface::get_N_Z_cg); // read-only
}
/**
* Unbind any properties bound to this FDM.
*
* This method allows the FDM to release properties so that a new
* FDM can bind them instead.
*/
void
FGInterface::unbind ()
{
_tiedProperties.Untie();
bound = false;
}
/**
* Update the state of the FDM (i.e. run the equations of motion).
*/
void
FGInterface::update (double dt)
{
SG_LOG(SG_FLIGHT, SG_ALERT, "dummy update() ... SHOULDN'T BE CALLED!");
}
bool FGInterface::readState(SGIOChannel* io)
{
FlightState buf;
int length = sizeof(FlightState);
if ( io->get_type() == sgFileType ) {
if ( io->read( (char *)(& buf), length ) == length ) {
SG_LOG( SG_IO, SG_DEBUG, "Success reading data." );
} else {
return false;
}
} else {
while ( io->read( (char *)(& buf), length ) == length ) {
SG_LOG( SG_IO, SG_DEBUG, "Success reading data." );
}
}
_state = buf; // copy the read state over
return true;
}
bool FGInterface::writeState(SGIOChannel* io)
{
if (!bound || !inited) {
return false;
}
int length = sizeof(FlightState);
if ( ! io->write( (char *)(& _state), length ) ) {
SG_LOG( SG_IO, SG_ALERT, "Error writing data." );
return false;
}
return true;
}
void FGInterface::_updatePositionM(const SGVec3d& cartPos)
{
TrackComputer tracker( _state.track, _state.path, _state.geodetic_position_v );
_state.cartesian_position_v = cartPos;
_state.geodetic_position_v = SGGeod::fromCart(_state.cartesian_position_v);
_state.geocentric_position_v = SGGeoc::fromCart(_state.cartesian_position_v);
_set_Sea_level_radius( SGGeodesy::SGGeodToSeaLevelRadius(_state.geodetic_position_v)*SG_METER_TO_FEET );
_update_ground_elev_at_pos();
}
void FGInterface::_updatePosition(const SGGeod& geod)
{
TrackComputer tracker( _state.track, _state.path, _state.geodetic_position_v );
_state.geodetic_position_v = geod;
_state.cartesian_position_v = SGVec3d::fromGeod(_state.geodetic_position_v);
_state.geocentric_position_v = SGGeoc::fromCart(_state.cartesian_position_v);
_set_Sea_level_radius( SGGeodesy::SGGeodToSeaLevelRadius(_state.geodetic_position_v)*SG_METER_TO_FEET );
_update_ground_elev_at_pos();
}
void FGInterface::_updatePosition(const SGGeoc& geoc)
{
TrackComputer tracker( _state.track, _state.path, _state.geodetic_position_v );
_state.geocentric_position_v = geoc;
_state.cartesian_position_v = SGVec3d::fromGeoc(_state.geocentric_position_v);
_state.geodetic_position_v = SGGeod::fromCart(_state.cartesian_position_v);
_set_Sea_level_radius( SGGeodesy::SGGeodToSeaLevelRadius(_state.geodetic_position_v)*SG_METER_TO_FEET );
_update_ground_elev_at_pos();
}
void FGInterface::_updateGeodeticPosition( double lat, double lon, double alt )
{
_updatePosition(SGGeod::fromRadFt(lon, lat, alt));
}
void FGInterface::_updateGeocentricPosition( double lat, double lon,
double alt )
{
_updatePosition(SGGeoc::fromRadFt(lon, lat, get_Sea_level_radius() + alt));
}
void FGInterface::_update_ground_elev_at_pos( void ) {
double groundlevel_m = get_groundlevel_m(_state.geodetic_position_v);
_set_Runway_altitude( groundlevel_m * SG_METER_TO_FEET );
}
// Positions
void FGInterface::set_Latitude(double lat) {
_state.geodetic_position_v.setLatitudeRad(lat);
}
void FGInterface::set_Longitude(double lon) {
_state.geodetic_position_v.setLongitudeRad(lon);
}
void FGInterface::set_Altitude(double alt) {
_state.geodetic_position_v.setElevationFt(alt);
}
void FGInterface::set_AltitudeAGL(double altagl) {
_state.altitude_agl=altagl;
}
// Velocities
void FGInterface::set_V_calibrated_kts(double vc) {
_state.v_calibrated_kts = vc;
}
void FGInterface::set_Mach_number(double mach) {
_state.mach_number = mach;
}
void FGInterface::set_Velocities_Local( double north,
double east,
double down ){
_state.v_local_v[0] = north;
_state.v_local_v[1] = east;
_state.v_local_v[2] = down;
}
void FGInterface::set_Velocities_Body( double u,
double v,
double w){
_state.v_body_v[0] = u;
_state.v_body_v[1] = v;
_state.v_body_v[2] = w;
}
// Euler angles
void FGInterface::set_Euler_Angles( double phi,
double theta,
double psi ) {
_state.euler_angles_v[0] = phi;
_state.euler_angles_v[1] = theta;
_state.euler_angles_v[2] = psi;
}
// Flight Path
void FGInterface::set_Climb_Rate( double roc) {
_state.climb_rate = roc;
}
void FGInterface::set_Gamma_vert_rad( double gamma) {
_state.gamma_vert_rad = gamma;
}
void FGInterface::set_Static_pressure(double p) { _state.static_pressure = p; }
void FGInterface::set_Static_temperature(double T) { _state.static_temperature = T; }
void FGInterface::set_Density(double rho) { _state.density = rho; }
void FGInterface::set_Velocities_Local_Airmass (double wnorth,
double weast,
double wdown ) {
_state.v_local_airmass_v[0] = wnorth;
_state.v_local_airmass_v[1] = weast;
_state.v_local_airmass_v[2] = wdown;
}
void FGInterface::_busdump(void)
{
SG_LOG(SG_FLIGHT,SG_INFO,"d_cg_rp_body_v: " << _state.d_cg_rp_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_dot_local_v: " << _state.v_dot_local_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_dot_body_v: " << _state.v_dot_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"a_cg_body_v: " << _state.a_cg_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"a_pilot_body_v: " << _state.a_pilot_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"n_cg_body_v: " << _state.n_cg_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_local_v: " << _state.v_local_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_local_rel_ground_v: " << _state.v_local_rel_ground_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_local_airmass_v: " << _state.v_local_airmass_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_body_v: " << _state.v_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"omega_body_v: " << _state.omega_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"euler_rates_v: " << _state.euler_rates_v);
SG_LOG(SG_FLIGHT,SG_INFO,"geocentric_rates_v: " << _state.geocentric_rates_v);
SG_LOG(SG_FLIGHT,SG_INFO,"geocentric_position_v: " << _state.geocentric_position_v);
SG_LOG(SG_FLIGHT,SG_INFO,"geodetic_position_v: " << _state.geodetic_position_v);
SG_LOG(SG_FLIGHT,SG_INFO,"euler_angles_v: " << _state.euler_angles_v);
SG_LOG(SG_FLIGHT,SG_INFO,"nlf: " << _state.nlf );
SG_LOG(SG_FLIGHT,SG_INFO,"v_rel_wind: " << _state.v_rel_wind );
SG_LOG(SG_FLIGHT,SG_INFO,"v_true_kts: " << _state.v_true_kts );
SG_LOG(SG_FLIGHT,SG_INFO,"v_ground_speed: " << _state.v_ground_speed );
SG_LOG(SG_FLIGHT,SG_INFO,"v_equiv_kts: " << _state.v_equiv_kts );
SG_LOG(SG_FLIGHT,SG_INFO,"v_calibrated_kts: " << _state.v_calibrated_kts );
SG_LOG(SG_FLIGHT,SG_INFO,"alpha: " << _state.alpha );
SG_LOG(SG_FLIGHT,SG_INFO,"beta: " << _state.beta );
SG_LOG(SG_FLIGHT,SG_INFO,"gamma_vert_rad: " << _state.gamma_vert_rad );
SG_LOG(SG_FLIGHT,SG_INFO,"density: " << _state.density );
SG_LOG(SG_FLIGHT,SG_INFO,"mach_number: " << _state.mach_number );
SG_LOG(SG_FLIGHT,SG_INFO,"static_pressure: " << _state.static_pressure );
SG_LOG(SG_FLIGHT,SG_INFO,"total_pressure: " << _state.total_pressure );
SG_LOG(SG_FLIGHT,SG_INFO,"dynamic_pressure: " << _state.dynamic_pressure );
SG_LOG(SG_FLIGHT,SG_INFO,"static_temperature: " << _state.static_temperature );
SG_LOG(SG_FLIGHT,SG_INFO,"total_temperature: " << _state.total_temperature );
SG_LOG(SG_FLIGHT,SG_INFO,"sea_level_radius: " << _state.sea_level_radius );
SG_LOG(SG_FLIGHT,SG_INFO,"earth_position_angle: " << _state.earth_position_angle );
SG_LOG(SG_FLIGHT,SG_INFO,"runway_altitude: " << _state.runway_altitude );
SG_LOG(SG_FLIGHT,SG_INFO,"climb_rate: " << _state.climb_rate );
SG_LOG(SG_FLIGHT,SG_INFO,"altitude_agl: " << _state.altitude_agl );
}
bool
FGInterface::prepare_ground_cache_m(double startSimTime, double endSimTime,
const double pt[3], double rad)
{
return ground_cache.prepare_ground_cache(startSimTime, endSimTime,
SGVec3d(pt), rad);
}
bool
FGInterface::prepare_ground_cache_ft(double startSimTime, double endSimTime,
const double pt[3], double rad)
{
// Convert units and do the real work.
SGVec3d pt_ft = SG_FEET_TO_METER*SGVec3d(pt);
return ground_cache.prepare_ground_cache(startSimTime, endSimTime,
pt_ft, rad*SG_FEET_TO_METER);
}
bool
FGInterface::is_valid_m(double *ref_time, double pt[3], double *rad)
{
SGVec3d _pt;
bool valid = ground_cache.is_valid(*ref_time, _pt, *rad);
assign(pt, _pt);
return valid;
}
bool FGInterface::is_valid_ft(double *ref_time, double pt[3], double *rad)
{
// Convert units and do the real work.
SGVec3d _pt;
bool found_ground = ground_cache.is_valid(*ref_time, _pt, *rad);
assign(pt, SG_METER_TO_FEET*_pt);
*rad *= SG_METER_TO_FEET;
return found_ground;
}
double
FGInterface::get_cat_m(double t, const double pt[3],
double end[2][3], double vel[2][3])
{
SGVec3d _end[2], _vel[2];
double dist = ground_cache.get_cat(t, SGVec3d(pt), _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], _end[k] );
assign( vel[k], _vel[k] );
}
return dist;
}
double
FGInterface::get_cat_ft(double t, const double pt[3],
double end[2][3], double vel[2][3])
{
// Convert units and do the real work.
SGVec3d pt_m = SG_FEET_TO_METER*SGVec3d(pt);
SGVec3d _end[2], _vel[2];
double dist = ground_cache.get_cat(t, pt_m, _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], SG_METER_TO_FEET*_end[k] );
assign( vel[k], SG_METER_TO_FEET*_vel[k] );
}
return dist*SG_METER_TO_FEET;
}
bool
FGInterface::get_body_m(double t, simgear::BVHNode::Id id,
double bodyToWorld[16], double linearVel[3],
double angularVel[3])
{
SGMatrixd _bodyToWorld;
SGVec3d _linearVel, _angularVel;
if (!ground_cache.get_body(t, _bodyToWorld, _linearVel, _angularVel, id))
return false;
assign(linearVel, _linearVel);
assign(angularVel, _angularVel);
for (unsigned i = 0; i < 16; ++i)
bodyToWorld[i] = _bodyToWorld.data()[i];
return true;
}
bool
FGInterface::get_agl_m(double t, const double pt[3], double max_altoff,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
simgear::BVHMaterial const*& material, simgear::BVHNode::Id& id)
{
SGVec3d pt_m = SGVec3d(pt) - max_altoff*ground_cache.get_down();
SGVec3d _contact, _normal, _linearVel, _angularVel;
material = 0;
bool ret = ground_cache.get_agl(t, pt_m, _contact, _normal, _linearVel,
_angularVel, id, material);
// correct the linear velocity, since the line intersector delivers
// values for the start point and the get_agl function should
// traditionally deliver for the contact point
_linearVel += cross(_angularVel, _contact - pt_m);
assign(contact, _contact);
assign(normal, _normal);
assign(linearVel, _linearVel);
assign(angularVel, _angularVel);
return ret;
}
bool
FGInterface::get_agl_ft(double t, const double pt[3], double max_altoff,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
simgear::BVHMaterial const*& material, simgear::BVHNode::Id& id)
{
// Convert units and do the real work.
SGVec3d pt_m = SGVec3d(pt) - max_altoff*ground_cache.get_down();
pt_m *= SG_FEET_TO_METER;
SGVec3d _contact, _normal, _linearVel, _angularVel;
material = 0;
bool ret = ground_cache.get_agl(t, pt_m, _contact, _normal, _linearVel,
_angularVel, id, material);
// correct the linear velocity, since the line intersector delivers
// values for the start point and the get_agl function should
// traditionally deliver for the contact point
_linearVel += cross(_angularVel, _contact - pt_m);
// Convert units back ...
assign( contact, SG_METER_TO_FEET*_contact );
assign( normal, _normal );
assign( linearVel, SG_METER_TO_FEET*_linearVel );
assign( angularVel, _angularVel );
return ret;
}
bool
FGInterface::get_nearest_m(double t, const double pt[3], double maxDist,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
simgear::BVHMaterial const*& material,
simgear::BVHNode::Id& id)
{
SGVec3d _contact, _linearVel, _angularVel;
material = 0;
if (!ground_cache.get_nearest(t, SGVec3d(pt), maxDist, _contact, _linearVel,
_angularVel, id, material))
return false;
assign(contact, _contact);
assign(linearVel, _linearVel);
assign(angularVel, _angularVel);
return true;
}
bool
FGInterface::get_nearest_ft(double t, const double pt[3], double maxDist,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
simgear::BVHMaterial const*& material,
simgear::BVHNode::Id& id)
{
SGVec3d _contact, _linearVel, _angularVel;
material = 0;
if (!ground_cache.get_nearest(t, SG_FEET_TO_METER*SGVec3d(pt),
SG_FEET_TO_METER*maxDist, _contact, _linearVel,
_angularVel, id, material))
return false;
assign(contact, SG_METER_TO_FEET*_contact);
assign(linearVel, SG_METER_TO_FEET*_linearVel);
assign(angularVel, _angularVel);
return true;
}
double
FGInterface::get_groundlevel_m(double lat, double lon, double alt)
{
return get_groundlevel_m(SGGeod::fromRadM(lon, lat, alt));
}
double
FGInterface::get_groundlevel_m(const SGGeod& geod)
{
// Compute the cartesian position of the given lat/lon/alt.
SGVec3d pos = SGVec3d::fromGeod(geod);
// FIXME: how to handle t - ref_time differences ???
SGVec3d cpos;
double ref_time = 0, radius;
// Prepare the ground cache for that position.
if (!is_valid_m(&ref_time, cpos.data(), &radius)) {
double startTime = ref_time;
double endTime = startTime + 1;
bool ok = prepare_ground_cache_m(startTime, endTime, pos.data(), 10);
/// This is most likely the case when the given altitude is
/// too low, try with a new altitude of 10000m, that should be
/// sufficient to find a ground level below everywhere on our planet
if (!ok) {
pos = SGVec3d::fromGeod(SGGeod::fromGeodM(geod, 10000));
/// If there is still no ground, return sea level radius
if (!prepare_ground_cache_m(startTime, endTime, pos.data(), 10))
return 0;
}
} else if (radius*radius <= distSqr(pos, cpos)) {
double startTime = ref_time;
double endTime = startTime + 1;
/// We reuse the old radius value, but only if it is at least 10 Meters ..
if (!(10 < radius)) // Well this strange compare is nan safe
radius = 10;
bool ok = prepare_ground_cache_m(startTime, endTime, pos.data(), radius);
/// This is most likely the case when the given altitude is
/// too low, try with a new altitude of 10000m, that should be
/// sufficient to find a ground level below everywhere on our planet
if (!ok) {
pos = SGVec3d::fromGeod(SGGeod::fromGeodM(geod, 10000));
/// If there is still no ground, return sea level radius
if (!prepare_ground_cache_m(startTime, endTime, pos.data(), radius))
return 0;
}
}
double contact[3], normal[3], vel[3], angvel[3];
const simgear::BVHMaterial* material;
simgear::BVHNode::Id id;
// Ignore the return value here, since it just tells us if
// the returns stem from the groundcache or from the coarse
// computations below the groundcache. The contact point is still something
// valid, the normals and the other returns just contain some defaults.
get_agl_m(ref_time, pos.data(), 2.0, contact, normal, vel, angvel,
material, id);
return SGGeod::fromCart(SGVec3d(contact)).getElevationM();
}
bool
FGInterface::caught_wire_m(double t, const double pt[4][3])
{
SGVec3d pt_m[4];
for (int i=0; i<4; ++i)
pt_m[i] = SGVec3d(pt[i]);
return ground_cache.caught_wire(t, pt_m);
}
bool
FGInterface::caught_wire_ft(double t, const double pt[4][3])
{
// Convert units and do the real work.
SGVec3d pt_m[4];
for (int i=0; i<4; ++i)
pt_m[i] = SG_FEET_TO_METER*SGVec3d(pt[i]);
return ground_cache.caught_wire(t, pt_m);
}
bool
FGInterface::get_wire_ends_m(double t, double end[2][3], double vel[2][3])
{
SGVec3d _end[2], _vel[2];
bool ret = ground_cache.get_wire_ends(t, _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], _end[k] );
assign( vel[k], _vel[k] );
}
return ret;
}
bool
FGInterface::get_wire_ends_ft(double t, double end[2][3], double vel[2][3])
{
// Convert units and do the real work.
SGVec3d _end[2], _vel[2];
bool ret = ground_cache.get_wire_ends(t, _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], SG_METER_TO_FEET*_end[k] );
assign( vel[k], SG_METER_TO_FEET*_vel[k] );
}
return ret;
}
void
FGInterface::release_wire(void)
{
ground_cache.release_wire();
}