135 lines
3.2 KiB
C++
135 lines
3.2 KiB
C++
// leastsqs.c -- Implements a simple linear least squares best fit routine
|
|
//
|
|
// Written by Curtis Olson, started September 1997.
|
|
//
|
|
// Copyright (C) 1997 Curtis L. Olson - curt@infoplane.com
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
//
|
|
// $Id$
|
|
//
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "leastsqs.hxx"
|
|
|
|
|
|
/*
|
|
Least squares fit:
|
|
|
|
y = b0 + b1x
|
|
|
|
n*sum(xi*yi) - (sum(xi)*sum(yi))
|
|
b1 = --------------------------------
|
|
n*sum(xi^2) - (sum(xi))^2
|
|
|
|
|
|
b0 = sum(yi)/n - b1*(sum(xi)/n)
|
|
*/
|
|
|
|
double sum_xi, sum_yi, sum_xi_2, sum_xi_yi;
|
|
int sum_n;
|
|
|
|
void least_squares(double *x, double *y, int n, double *m, double *b) {
|
|
int i;
|
|
|
|
sum_xi = sum_yi = sum_xi_2 = sum_xi_yi = 0.0;
|
|
sum_n = n;
|
|
|
|
for ( i = 0; i < n; i++ ) {
|
|
sum_xi += x[i];
|
|
sum_yi += y[i];
|
|
sum_xi_2 += x[i] * x[i];
|
|
sum_xi_yi += x[i] * y[i];
|
|
}
|
|
|
|
/* printf("sum(xi)=%.2f sum(yi)=%.2f sum(xi^2)=%.2f sum(xi*yi)=%.2f\n",
|
|
sum_xi, sum_yi, sum_xi_2, sum_xi_yi); */
|
|
|
|
*m = ( (double)sum_n * sum_xi_yi - sum_xi * sum_yi ) /
|
|
( (double)sum_n * sum_xi_2 - sum_xi * sum_xi );
|
|
*b = (sum_yi / (double)sum_n) - (*m) * (sum_xi / (double)sum_n);
|
|
|
|
/* printf("slope = %.2f intercept = %.2f\n", *m, *b); */
|
|
}
|
|
|
|
|
|
/* incrimentally update existing values with a new data point */
|
|
void least_squares_update(double x, double y, double *m, double *b) {
|
|
++sum_n;
|
|
|
|
sum_xi += x;
|
|
sum_yi += y;
|
|
sum_xi_2 += x * x;
|
|
sum_xi_yi += x * y;
|
|
|
|
/* printf("sum(xi)=%.2f sum(yi)=%.2f sum(xi^2)=%.2f sum(xi*yi)=%.2f\n",
|
|
sum_xi, sum_yi, sum_xi_2, sum_xi_yi); */
|
|
|
|
*m = ( (double)sum_n * sum_xi_yi - sum_xi * sum_yi ) /
|
|
( (double)sum_n * sum_xi_2 - sum_xi * sum_xi );
|
|
*b = (sum_yi / (double)sum_n) - (*m) * (sum_xi / (double)sum_n);
|
|
|
|
/* printf("slope = %.2f intercept = %.2f\n", *m, *b); */
|
|
}
|
|
|
|
|
|
/*
|
|
return the least squares error:
|
|
|
|
(y[i] - y_hat[i])^2
|
|
-------------------
|
|
n
|
|
*/
|
|
double least_squares_error(double *x, double *y, int n, double m, double b) {
|
|
int i;
|
|
double error, sum;
|
|
|
|
sum = 0.0;
|
|
|
|
for ( i = 0; i < n; i++ ) {
|
|
error = y[i] - (m * x[i] + b);
|
|
sum += error * error;
|
|
// printf("%.2f %.2f\n", error, sum);
|
|
}
|
|
|
|
return ( sum / (double)n );
|
|
}
|
|
|
|
|
|
/*
|
|
return the maximum least squares error:
|
|
|
|
(y[i] - y_hat[i])^2
|
|
*/
|
|
double least_squares_max_error(double *x, double *y, int n, double m, double b){
|
|
int i;
|
|
double error, max_error;
|
|
|
|
max_error = 0.0;
|
|
|
|
for ( i = 0; i < n; i++ ) {
|
|
error = y[i] - (m * x[i] + b);
|
|
error = error * error;
|
|
if ( error > max_error ) {
|
|
max_error = error;
|
|
}
|
|
}
|
|
|
|
return ( max_error );
|
|
}
|
|
|
|
|