1
0
Fork 0
flightgear/src/FDM/JSBSim/initialization/FGTrim.cpp

889 lines
31 KiB
C++

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Header: FGTrim.cpp
Author: Tony Peden
Date started: 9/8/99
--------- Copyright (C) 1999 Anthony K. Peden (apeden@earthlink.net) ---------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
Further information about the GNU Lesser General Public License can also be found on
the world wide web at http://www.gnu.org.
HISTORY
--------------------------------------------------------------------------------
9/8/99 TP Created
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
This class takes the given set of IC's and finds the angle of attack, elevator,
and throttle setting required to fly steady level. This is currently for in-air
conditions only. It is implemented using an iterative, one-axis-at-a-time
scheme. */
// !!!!!!! BEWARE ALL YE WHO ENTER HERE !!!!!!!
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#include <iomanip>
#include "FGTrim.h"
#include "models/FGGroundReactions.h"
#include "models/FGInertial.h"
#include "models/FGAccelerations.h"
#include "models/FGMassBalance.h"
#include "models/FGFCS.h"
#if _MSC_VER
#pragma warning (disable : 4786 4788)
#endif
using namespace std;
namespace JSBSim {
IDENT(IdSrc,"$Id: FGTrim.cpp,v 1.22 2014/01/13 10:46:00 ehofman Exp $");
IDENT(IdHdr,ID_TRIM);
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGTrim::FGTrim(FGFDMExec *FDMExec,TrimMode tt) {
N=Nsub=0;
max_iterations=60;
max_sub_iterations=100;
Tolerance=1E-3;
A_Tolerance = Tolerance / 10;
Debug=0;DebugLevel=0;
fdmex=FDMExec;
fgic=fdmex->GetIC();
total_its=0;
trimudot=true;
gamma_fallback=false;
axis_count=0;
mode=tt;
xlo=xhi=alo=ahi=0.0;
targetNlf=1.0;
debug_axis=tAll;
SetMode(tt);
if (debug_lvl & 2) cout << "Instantiated: FGTrim" << endl;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGTrim::~FGTrim(void) {
for(current_axis=0; current_axis<TrimAxes.size(); current_axis++) {
delete TrimAxes[current_axis];
}
delete[] sub_iterations;
delete[] successful;
delete[] solution;
if (debug_lvl & 2) cout << "Destroyed: FGTrim" << endl;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::TrimStats() {
int run_sum=0;
cout << endl << " Trim Statistics: " << endl;
cout << " Total Iterations: " << total_its << endl;
if( total_its > 0) {
cout << " Sub-iterations:" << endl;
for (current_axis=0; current_axis<TrimAxes.size(); current_axis++) {
run_sum += TrimAxes[current_axis]->GetRunCount();
cout << " " << setw(5) << TrimAxes[current_axis]->GetStateName().c_str()
<< ": " << setprecision(3) << sub_iterations[current_axis]
<< " average: " << setprecision(5) << sub_iterations[current_axis]/double(total_its)
<< " successful: " << setprecision(3) << successful[current_axis]
<< " stability: " << setprecision(5) << TrimAxes[current_axis]->GetAvgStability()
<< endl;
}
cout << " Run Count: " << run_sum << endl;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::Report(void) {
cout << " Trim Results: " << endl;
for(current_axis=0; current_axis<TrimAxes.size(); current_axis++)
TrimAxes[current_axis]->AxisReport();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::ClearStates(void) {
FGTrimAxis* ta;
mode=tCustom;
vector<FGTrimAxis*>::iterator iAxes;
iAxes = TrimAxes.begin();
while (iAxes != TrimAxes.end()) {
ta=*iAxes;
delete ta;
iAxes++;
}
TrimAxes.clear();
//cout << "TrimAxes.size(): " << TrimAxes.size() << endl;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGTrim::AddState( State state, Control control ) {
FGTrimAxis* ta;
bool result=true;
mode = tCustom;
vector <FGTrimAxis*>::iterator iAxes = TrimAxes.begin();
while (iAxes != TrimAxes.end()) {
ta=*iAxes;
if( ta->GetStateType() == state )
result=false;
iAxes++;
}
if(result) {
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,state,control));
delete[] sub_iterations;
delete[] successful;
delete[] solution;
sub_iterations=new double[TrimAxes.size()];
successful=new double[TrimAxes.size()];
solution=new bool[TrimAxes.size()];
}
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGTrim::RemoveState( State state ) {
FGTrimAxis* ta;
bool result=false;
mode = tCustom;
vector <FGTrimAxis*>::iterator iAxes = TrimAxes.begin();
while (iAxes != TrimAxes.end()) {
ta=*iAxes;
if( ta->GetStateType() == state ) {
delete ta;
iAxes = TrimAxes.erase(iAxes);
result=true;
continue;
}
iAxes++;
}
if(result) {
delete[] sub_iterations;
delete[] successful;
delete[] solution;
sub_iterations=new double[TrimAxes.size()];
successful=new double[TrimAxes.size()];
solution=new bool[TrimAxes.size()];
}
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGTrim::EditState( State state, Control new_control ){
FGTrimAxis* ta;
bool result=false;
mode = tCustom;
vector <FGTrimAxis*>::iterator iAxes = TrimAxes.begin();
while (iAxes != TrimAxes.end()) {
ta=*iAxes;
if( ta->GetStateType() == state ) {
TrimAxes.insert(iAxes,1,new FGTrimAxis(fdmex,fgic,state,new_control));
delete ta;
TrimAxes.erase(iAxes+1);
result=true;
break;
}
iAxes++;
}
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGTrim::DoTrim(void) {
trim_failed=false;
int i;
FGFCS *FCS = fdmex->GetFCS();
vector<double> throttle0 = FCS->GetThrottleCmd();
double elevator0 = FCS->GetDeCmd();
double aileron0 = FCS->GetDaCmd();
double rudder0 = FCS->GetDrCmd();
double PitchTrim0 = FCS->GetPitchTrimCmd();
FGInitialCondition fgic0 = *fgic;
for(i=0;i < fdmex->GetGroundReactions()->GetNumGearUnits();i++){
fdmex->GetGroundReactions()->GetGearUnit(i)->SetReport(false);
}
fdmex->DisableOutput();
fdmex->SetTrimStatus(true);
fdmex->RunIC();
fdmex->SuspendIntegration();
fgic->SetPRadpsIC(0.0);
fgic->SetQRadpsIC(0.0);
fgic->SetRRadpsIC(0.0);
if (mode == tGround) {
trimOnGround();
double theta = fgic->GetThetaRadIC();
double phi = fgic->GetPhiRadIC();
// Take opportunity of the first approx. found by trimOnGround() to
// refine the control limits.
TrimAxes[0]->SetControlLimits(0., fgic->GetAltitudeAGLFtIC());
TrimAxes[1]->SetControlLimits(theta - 5.0 * degtorad, theta + 5.0 * degtorad);
TrimAxes[2]->SetControlLimits(phi - 30.0 * degtorad, phi + 30.0 * degtorad);
}
//clear the sub iterations counts & zero out the controls
for(current_axis=0;current_axis<TrimAxes.size();current_axis++) {
//cout << current_axis << " " << TrimAxes[current_axis]->GetStateName()
//<< " " << TrimAxes[current_axis]->GetControlName()<< endl;
xlo=TrimAxes[current_axis]->GetControlMin();
xhi=TrimAxes[current_axis]->GetControlMax();
TrimAxes[current_axis]->SetControl((xlo+xhi)/2);
TrimAxes[current_axis]->Run();
//TrimAxes[current_axis]->AxisReport();
sub_iterations[current_axis]=0;
successful[current_axis]=0;
solution[current_axis]=false;
}
if(mode == tPullup ) {
cout << "Setting pitch rate and nlf... " << endl;
setupPullup();
cout << "pitch rate done ... " << endl;
TrimAxes[0]->SetStateTarget(targetNlf);
cout << "nlf done" << endl;
} else if (mode == tTurn) {
setupTurn();
//TrimAxes[0]->SetStateTarget(targetNlf);
}
do {
axis_count=0;
for(current_axis=0;current_axis<TrimAxes.size();current_axis++) {
setDebug();
updateRates();
Nsub=0;
if(!solution[current_axis]) {
if(checkLimits()) {
solution[current_axis]=true;
solve();
}
} else if(findInterval()) {
solve();
} else {
solution[current_axis]=false;
}
sub_iterations[current_axis]+=Nsub;
}
for(current_axis=0;current_axis<TrimAxes.size();current_axis++) {
//these checks need to be done after all the axes have run
if(Debug > 0) TrimAxes[current_axis]->AxisReport();
if(TrimAxes[current_axis]->InTolerance()) {
axis_count++;
successful[current_axis]++;
}
}
if((axis_count == TrimAxes.size()-1) && (TrimAxes.size() > 1)) {
//cout << TrimAxes.size()-1 << " out of " << TrimAxes.size() << "!" << endl;
//At this point we can check the input limits of the failed axis
//and declare the trim failed if there is no sign change. If there
//is, keep going until success or max iteration count
//Oh, well: two out of three ain't bad
for(current_axis=0;current_axis<TrimAxes.size();current_axis++) {
//these checks need to be done after all the axes have run
if(!TrimAxes[current_axis]->InTolerance()) {
if(!checkLimits()) {
// special case this for now -- if other cases arise proper
// support can be added to FGTrimAxis
if( (gamma_fallback) &&
(TrimAxes[current_axis]->GetStateType() == tUdot) &&
(TrimAxes[current_axis]->GetControlType() == tThrottle)) {
cout << " Can't trim udot with throttle, trying flight"
<< " path angle. (" << N << ")" << endl;
if(TrimAxes[current_axis]->GetState() > 0)
TrimAxes[current_axis]->SetControlToMin();
else
TrimAxes[current_axis]->SetControlToMax();
TrimAxes[current_axis]->Run();
delete TrimAxes[current_axis];
TrimAxes[current_axis]=new FGTrimAxis(fdmex,fgic,tUdot,
tGamma );
} else {
cout << " Sorry, " << TrimAxes[current_axis]->GetStateName()
<< " doesn't appear to be trimmable" << endl;
//total_its=k;
trim_failed=true; //force the trim to fail
} //gamma_fallback
}
} //solution check
} //for loop
} //all-but-one check
N++;
if(N > max_iterations)
trim_failed=true;
} while((axis_count < TrimAxes.size()) && (!trim_failed));
if((!trim_failed) && (axis_count >= TrimAxes.size())) {
total_its=N;
if (debug_lvl > 0)
cout << endl << " Trim successful" << endl;
} else { // The trim has failed
total_its=N;
// Restore the aircraft parameters to their initial values
*fgic = fgic0;
FCS->SetDeCmd(elevator0);
FCS->SetDaCmd(aileron0);
FCS->SetDrCmd(rudder0);
FCS->SetPitchTrimCmd(PitchTrim0);
for (unsigned int i=0; i < throttle0.size(); i++)
FCS->SetThrottleCmd(i, throttle0[i]);
// If WOW is true we must make sure there are no gears into the ground.
if (fdmex->GetGroundReactions()->GetWOW()) {
fdmex->Initialize(fgic);
fdmex->Run();
trimOnGround();
}
if (debug_lvl > 0)
cout << endl << " Trim failed" << endl;
}
fdmex->ResumeIntegration();
fdmex->RunIC();
fdmex->SetTrimStatus(false);
fdmex->EnableOutput();
for(i=0;i < fdmex->GetGroundReactions()->GetNumGearUnits();i++){
fdmex->GetGroundReactions()->GetGearUnit(i)->SetReport(true);
}
return !trim_failed;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Trim the aircraft on the ground. The algorithm is looking for a stable
// position of the aicraft. Assuming the aircaft is a rigid body and the ground
// a plane: we need to find the translations and rotations of the aircraft that
// will move 3 non-colinear points in contact with the ground.
// The algorithm proceeds in three stages (one for each point):
// 1. Look for the contact point closer to or deeper into the ground. Move the
// aircraft along the vertical direction so that only this contact point
// remains in contact with the ground.
// 2. The forces applied on the aircraft (most likely the gravity) will generate
// a moment on the aircraft around the point in contact. The rotation axis is
// therefore the moment axis. The 2nd stage thus consists in determining the
// minimum rotation angle around the first point in contact that will place a
// second contact point on the ground.
// 3. At this stage, 2 points are in contact with the ground: the rotation axis
// is therefore the vector generated by the 2 points. Like stage #2, the
// rotation direction will be driven by the moment around the axis formed by
// the 2 points in contact. The rotation angle is obtained similarly to stage
// #2: it is the minimum angle that will place a third contact point on the
// ground.
// The calculations below do not account for the compression of the landing
// gears meaning that the position found is close to the real position but not
// strictly equal to it.
void FGTrim::trimOnGround(void)
{
FGGroundReactions* GroundReactions = fdmex->GetGroundReactions();
FGPropagate* Propagate = fdmex->GetPropagate();
FGMassBalance* MassBalance = fdmex->GetMassBalance();
FGAccelerations* Accelerations = fdmex->GetAccelerations();
vector<ContactPoints> contacts;
FGLocation CGLocation = Propagate->GetLocation();
FGMatrix33 Tec2b = Propagate->GetTec2b();
FGMatrix33 Tl2b = Propagate->GetTl2b();
double hmin = 1E+10;
int contactRef = -1;
// Build the list of the aircraft contact points and take opportunity of the
// loop to find which one is closer to (or deeper into) the ground.
for (int i = 0; i < GroundReactions->GetNumGearUnits(); i++) {
ContactPoints c;
FGLGear* gear = GroundReactions->GetGearUnit(i);
c.location = gear->GetLocalGear();
FGLocation gearLoc = CGLocation.LocalToLocation(c.location);
c.location = Tl2b * c.location;
FGColumnVector3 normal, vDummy;
FGLocation lDummy;
double height = gearLoc.GetContactPoint(fdmex->GetSimTime(), lDummy,
normal, vDummy, vDummy);
c.normal = Tec2b * normal;
contacts.push_back(c);
if (height < hmin) {
hmin = height;
contactRef = i;
}
}
// Remove the contact point that is closest to the ground from the list:
// the rotation axis will be going thru this point so we need to remove it
// to avoid divisions by zero that could result from the computation of
// the rotations.
FGColumnVector3 contact0 = contacts[contactRef].location;
contacts.erase(contacts.begin() + contactRef);
// Update the initial conditions: this should remove the forces generated
// by overcompressed landing gears
fgic->SetAltitudeASLFtIC(fgic->GetAltitudeASLFtIC() - hmin);
fdmex->Initialize(fgic);
fdmex->Run();
// Compute the rotation axis: it is obtained from the direction of the
// moment measured at the contact point 'contact0'
FGColumnVector3 force = MassBalance->GetMass() * Accelerations->GetUVWdot();
FGColumnVector3 moment = MassBalance->GetJ() * Accelerations->GetPQRdot()
+ force * contact0;
FGColumnVector3 rotationAxis = moment.Normalize();
// Compute the rotation parameters: angle and the first point to come into
// contact with the ground when the rotation is applied.
RotationParameters rParam = calcRotation(contacts, rotationAxis, contact0);
FGQuaternion q0(rParam.angleMin, rotationAxis);
// Apply the computed rotation to all the contact points
FGMatrix33 rot = q0.GetTInv();
vector<ContactPoints>::iterator iter;
for (iter = contacts.begin(); iter != contacts.end(); iter++)
iter->location = contact0 + rot * (iter->location - contact0);
// Remove the second point to come in contact with the ground from the list.
// The reason is the same than above: avoid divisions by zero when the next
// rotation will be computed.
FGColumnVector3 contact1 = rParam.contactRef->location;
contacts.erase(rParam.contactRef);
// Compute the rotation axis: now there are 2 points in contact with the
// ground so the only option for the aircraft is to rotate around the axis
// generated by these 2 points.
rotationAxis = contact1 - contact0;
// Make sure that the rotation orientation is consistent with the moment.
if (DotProduct(rotationAxis, moment) < 0.0)
rotationAxis = contact0 - contact1;
rotationAxis.Normalize();
// Compute the rotation parameters
rParam = calcRotation(contacts, rotationAxis, contact0);
FGQuaternion q1(rParam.angleMin, rotationAxis);
// Update the aircraft orientation
FGColumnVector3 euler = (q0 * q1 * fgic->GetOrientation()).GetEuler();
fgic->SetPhiRadIC(euler(1));
fgic->SetThetaRadIC(euler(2));
fgic->SetPsiRadIC(euler(3));
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Given a set of points and a rotation axis, this routine computes for each
// point the rotation angle that would drive the point in contact with the
// plane. It returns the minimum angle as well as the point with which this
// angle has been obtained.
// The rotation axis is defined by a vector 'u' and a point 'M0' on the axis.
// Since we are in the body frame, the position if 'M0' is measured from the CG
// hence the name 'GM0'.
FGTrim::RotationParameters FGTrim::calcRotation(vector<ContactPoints>& contacts,
const FGColumnVector3& u,
const FGColumnVector3& GM0)
{
RotationParameters rParam;
vector<ContactPoints>::iterator iter;
rParam.angleMin = 3.0 * M_PI;
for (iter = contacts.begin(); iter != contacts.end(); iter++) {
// Below the processed contact point is named 'M'
// Construct an orthonormal basis (u, v, t). The ground normal is obtained
// from iter->normal.
FGColumnVector3 t = u * iter->normal;
double length = t.Magnitude();
t /= length; // Normalize the tangent
FGColumnVector3 v = t * u;
FGColumnVector3 MM0 = GM0 - iter->location;
// d0 is the distance from the circle center 'C' to the reference point 'M0'
double d0 = DotProduct(MM0, u);
// Compute the square of the circle radius i.e. the square of the distance
// between 'C' and 'M'.
double sqrRadius = DotProduct(MM0, MM0) - d0 * d0;
// Compute the distance from the circle center 'C' to the line made by the
// intersection between the ground and the plane that contains the circle.
double DistPlane = d0 * DotProduct(u, iter->normal) / length;
// The coordinate of the point of intersection 'P' between the circle and
// the ground is (0, DistPlane, alpha) in the basis (u, v, t)
double alpha = sqrt(sqrRadius - DistPlane * DistPlane);
FGColumnVector3 CP = alpha * t + DistPlane * v;
// The transformation is now constructed: we can extract the angle using the
// classical formulas (cosine is obtained from the dot product and sine from
// the cross product).
double cosine = -DotProduct(MM0, CP) / sqrRadius;
double sine = DotProduct(MM0 * u, CP) / sqrRadius;
double angle = atan2(sine, cosine);
if (angle < 0.0) angle += 2.0 * M_PI;
if (angle < rParam.angleMin) {
rParam.angleMin = angle;
rParam.contactRef = iter;
}
}
return rParam;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGTrim::solve(void) {
double x1,x2,x3,f1,f2,f3,d,d0;
const double relax =0.9;
double eps=TrimAxes[current_axis]->GetSolverEps();
x1=x2=x3=0;
d=1;
bool success=false;
//initializations
if( solutionDomain != 0) {
/* if(ahi > alo) { */
x1=xlo;f1=alo;
x3=xhi;f3=ahi;
/* } else {
x1=xhi;f1=ahi;
x3=xlo;f3=alo;
} */
d0=fabs(x3-x1);
//iterations
//max_sub_iterations=TrimAxes[current_axis]->GetIterationLimit();
while ( (TrimAxes[current_axis]->InTolerance() == false )
&& (fabs(d) > eps) && (Nsub < max_sub_iterations)) {
Nsub++;
d=(x3-x1)/d0;
x2=x1-d*d0*f1/(f3-f1);
TrimAxes[current_axis]->SetControl(x2);
TrimAxes[current_axis]->Run();
f2=TrimAxes[current_axis]->GetState();
if(Debug > 1) {
cout << "FGTrim::solve Nsub,x1,x2,x3: " << Nsub << ", " << x1
<< ", " << x2 << ", " << x3 << endl;
cout << " " << f1 << ", " << f2 << ", " << f3 << endl;
}
if(f1*f2 <= 0.0) {
x3=x2;
f3=f2;
f1=relax*f1;
//cout << "Solution is between x1 and x2" << endl;
}
else if(f2*f3 <= 0.0) {
x1=x2;
f1=f2;
f3=relax*f3;
//cout << "Solution is between x2 and x3" << endl;
}
//cout << i << endl;
}//end while
if(Nsub < max_sub_iterations) success=true;
}
return success;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/*
produces an interval (xlo..xhi) on one side or the other of the current
control value in which a solution exists. This domain is, hopefully,
smaller than xmin..0 or 0..xmax and the solver will require fewer iterations
to find the solution. This is, hopefully, more efficient than having the
solver start from scratch every time. Maybe it isn't though...
This tries to take advantage of the idea that the changes from iteration to
iteration will be small after the first one or two top-level iterations.
assumes that changing the control will a produce significant change in the
accel i.e. checkLimits() has already been called.
if a solution is found above the current control, the function returns true
and xlo is set to the current control, xhi to the interval max it found, and
solutionDomain is set to 1.
if the solution lies below the current control, then the function returns
true and xlo is set to the interval min it found and xmax to the current
control. if no solution is found, then the function returns false.
in all cases, alo=accel(xlo) and ahi=accel(xhi) after the function exits.
no assumptions about the state of the sim after this function has run
can be made.
*/
bool FGTrim::findInterval(void) {
bool found=false;
double step;
double current_control=TrimAxes[current_axis]->GetControl();
double current_accel=TrimAxes[current_axis]->GetState();;
double xmin=TrimAxes[current_axis]->GetControlMin();
double xmax=TrimAxes[current_axis]->GetControlMax();
double lastxlo,lastxhi,lastalo,lastahi;
step=0.025*fabs(xmax);
xlo=xhi=current_control;
alo=ahi=current_accel;
lastxlo=xlo;lastxhi=xhi;
lastalo=alo;lastahi=ahi;
do {
Nsub++;
step*=2;
xlo-=step;
if(xlo < xmin) xlo=xmin;
xhi+=step;
if(xhi > xmax) xhi=xmax;
TrimAxes[current_axis]->SetControl(xlo);
TrimAxes[current_axis]->Run();
alo=TrimAxes[current_axis]->GetState();
TrimAxes[current_axis]->SetControl(xhi);
TrimAxes[current_axis]->Run();
ahi=TrimAxes[current_axis]->GetState();
if(fabs(ahi-alo) <= TrimAxes[current_axis]->GetTolerance()) continue;
if(alo*ahi <=0) { //found interval with root
found=true;
if(alo*current_accel <= 0) { //narrow interval down a bit
solutionDomain=-1;
xhi=lastxlo;
ahi=lastalo;
//xhi=current_control;
//ahi=current_accel;
} else {
solutionDomain=1;
xlo=lastxhi;
alo=lastahi;
//xlo=current_control;
//alo=current_accel;
}
}
lastxlo=xlo;lastxhi=xhi;
lastalo=alo;lastahi=ahi;
if( !found && xlo==xmin && xhi==xmax ) continue;
if(Debug > 1)
cout << "FGTrim::findInterval: Nsub=" << Nsub << " Lo= " << xlo
<< " Hi= " << xhi << " alo*ahi: " << alo*ahi << endl;
} while(!found && (Nsub <= max_sub_iterations) );
return found;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//checks to see which side of the current control value the solution is on
//and sets solutionDomain accordingly:
// 1 if solution is between the current and max
// -1 if solution is between the min and current
// 0 if there is no solution
//
//if changing the control produces no significant change in the accel then
//solutionDomain is set to zero and the function returns false
//if a solution is found, then xlo and xhi are set so that they bracket
//the solution, alo is set to accel(xlo), and ahi is set to accel(xhi)
//if there is no change or no solution then xlo=xmin, alo=accel(xmin) and
//xhi=xmax and ahi=accel(xmax)
//in all cases the sim is left such that the control=xmax and accel=ahi
bool FGTrim::checkLimits(void) {
bool solutionExists;
double current_control=TrimAxes[current_axis]->GetControl();
double current_accel=TrimAxes[current_axis]->GetState();
xlo=TrimAxes[current_axis]->GetControlMin();
xhi=TrimAxes[current_axis]->GetControlMax();
TrimAxes[current_axis]->SetControl(xlo);
TrimAxes[current_axis]->Run();
alo=TrimAxes[current_axis]->GetState();
TrimAxes[current_axis]->SetControl(xhi);
TrimAxes[current_axis]->Run();
ahi=TrimAxes[current_axis]->GetState();
if(Debug > 1)
cout << "checkLimits() xlo,xhi,alo,ahi: " << xlo << ", " << xhi << ", "
<< alo << ", " << ahi << endl;
solutionDomain=0;
solutionExists=false;
if(fabs(ahi-alo) > TrimAxes[current_axis]->GetTolerance()) {
if(alo*current_accel <= 0) {
solutionExists=true;
solutionDomain=-1;
xhi=current_control;
ahi=current_accel;
} else if(current_accel*ahi < 0){
solutionExists=true;
solutionDomain=1;
xlo=current_control;
alo=current_accel;
}
}
TrimAxes[current_axis]->SetControl(current_control);
TrimAxes[current_axis]->Run();
return solutionExists;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::setupPullup() {
double g,q,cgamma;
g=fdmex->GetInertial()->gravity();
cgamma=cos(fgic->GetFlightPathAngleRadIC());
cout << "setPitchRateInPullup(): " << g << ", " << cgamma << ", "
<< fgic->GetVtrueFpsIC() << endl;
q=g*(targetNlf-cgamma)/fgic->GetVtrueFpsIC();
cout << targetNlf << ", " << q << endl;
fgic->SetQRadpsIC(q);
cout << "setPitchRateInPullup() complete" << endl;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::setupTurn(void){
double g,phi;
phi = fgic->GetPhiRadIC();
if( fabs(phi) > 0.001 && fabs(phi) < 1.56 ) {
targetNlf = 1 / cos(phi);
g = fdmex->GetInertial()->gravity();
psidot = g*tan(phi) / fgic->GetUBodyFpsIC();
cout << targetNlf << ", " << psidot << endl;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::updateRates(void){
if( mode == tTurn ) {
double phi = fgic->GetPhiRadIC();
double g = fdmex->GetInertial()->gravity();
double p,q,r,theta;
if(fabs(phi) > 0.001 && fabs(phi) < 1.56 ) {
theta=fgic->GetThetaRadIC();
phi=fgic->GetPhiRadIC();
psidot = g*tan(phi) / fgic->GetUBodyFpsIC();
p=-psidot*sin(theta);
q=psidot*cos(theta)*sin(phi);
r=psidot*cos(theta)*cos(phi);
} else {
p=q=r=0;
}
fgic->SetPRadpsIC(p);
fgic->SetQRadpsIC(q);
fgic->SetRRadpsIC(r);
} else if( mode == tPullup && fabs(targetNlf-1) > 0.01) {
double g,q,cgamma;
g=fdmex->GetInertial()->gravity();
cgamma=cos(fgic->GetFlightPathAngleRadIC());
q=g*(targetNlf-cgamma)/fgic->GetVtrueFpsIC();
fgic->SetQRadpsIC(q);
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::setDebug(void) {
if(debug_axis == tAll ||
TrimAxes[current_axis]->GetStateType() == debug_axis ) {
Debug=DebugLevel;
return;
} else {
Debug=0;
return;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGTrim::SetMode(TrimMode tt) {
ClearStates();
mode=tt;
switch(tt) {
case tFull:
if (debug_lvl > 0)
cout << " Full Trim" << endl;
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tWdot,tAlpha ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tUdot,tThrottle ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tQdot,tPitchTrim ));
//TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tHmgt,tBeta ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tVdot,tPhi ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tPdot,tAileron ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tRdot,tRudder ));
break;
case tLongitudinal:
if (debug_lvl > 0)
cout << " Longitudinal Trim" << endl;
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tWdot,tAlpha ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tUdot,tThrottle ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tQdot,tPitchTrim ));
break;
case tGround:
if (debug_lvl > 0)
cout << " Ground Trim" << endl;
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tWdot,tAltAGL ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tQdot,tTheta ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tPdot,tPhi ));
break;
case tPullup:
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tNlf,tAlpha ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tUdot,tThrottle ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tQdot,tPitchTrim ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tHmgt,tBeta ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tVdot,tPhi ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tPdot,tAileron ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tRdot,tRudder ));
break;
case tTurn:
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tWdot,tAlpha ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tUdot,tThrottle ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tQdot,tPitchTrim ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tVdot,tBeta ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tPdot,tAileron ));
TrimAxes.push_back(new FGTrimAxis(fdmex,fgic,tRdot,tRudder ));
break;
case tCustom:
case tNone:
break;
}
//cout << "TrimAxes.size(): " << TrimAxes.size() << endl;
sub_iterations=new double[TrimAxes.size()];
successful=new double[TrimAxes.size()];
solution=new bool[TrimAxes.size()];
current_axis=0;
}
//YOU WERE WARNED, BUT YOU DID IT ANYWAY.
}