1
0
Fork 0
flightgear/src/FDM/JSBSim/FGFDMExec.cpp

1274 lines
46 KiB
C++

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Module: FGFDMExec.cpp
Author: Jon S. Berndt
Date started: 11/17/98
Purpose: Schedules and runs the model routines.
------------- Copyright (C) 1999 Jon S. Berndt (jon@jsbsim.org) -------------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
Further information about the GNU Lesser General Public License can also be found on
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
This class wraps up the simulation scheduling routines.
HISTORY
--------------------------------------------------------------------------------
11/17/98 JSB Created
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
COMMENTS, REFERENCES, and NOTES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#include <iostream>
#include <iterator>
#include <cstdlib>
#include "FGFDMExec.h"
#include "models/atmosphere/FGStandardAtmosphere.h"
#include "models/atmosphere/FGWinds.h"
#include "models/FGFCS.h"
#include "models/FGPropulsion.h"
#include "models/FGMassBalance.h"
#include "models/FGGroundReactions.h"
#include "models/FGExternalReactions.h"
#include "models/FGBuoyantForces.h"
#include "models/FGAerodynamics.h"
#include "models/FGInertial.h"
#include "models/FGAircraft.h"
#include "models/FGAccelerations.h"
#include "models/FGPropagate.h"
#include "models/FGAuxiliary.h"
#include "models/FGInput.h"
#include "models/FGOutput.h"
#include "initialization/FGInitialCondition.h"
#include "initialization/FGSimplexTrim.h"
#include "initialization/FGLinearization.h"
#include "input_output/FGPropertyManager.h"
#include "input_output/FGScript.h"
#include "input_output/FGXMLFileRead.h"
#include "input_output/FGXMLElement.h"
using namespace std;
namespace JSBSim {
IDENT(IdSrc,"$Id: FGFDMExec.cpp,v 1.154 2014/01/13 10:45:59 ehofman Exp $");
IDENT(IdHdr,ID_FDMEXEC);
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// Constructor
FGFDMExec::FGFDMExec(FGPropertyManager* root, unsigned int* fdmctr) : Root(root), FDMctr(fdmctr)
{
Frame = 0;
Error = 0;
SetGroundCallback(new FGDefaultGroundCallback());
IC = 0;
Trim = 0;
Script = 0;
RootDir = "";
modelLoaded = false;
IsChild = false;
holding = false;
Terminate = false;
StandAlone = false;
ResetMode = 0;
IncrementThenHolding = false; // increment then hold is off by default
TimeStepsUntilHold = -1;
sim_time = 0.0;
dT = 1.0/120.0; // a default timestep size. This is needed for when JSBSim is
// run in standalone mode with no initialization file.
AircraftPath = "aircraft";
EnginePath = "engine";
SystemsPath = "systems";
try {
char* num = getenv("JSBSIM_DEBUG");
if (num) debug_lvl = atoi(num); // set debug level
} catch (...) { // if error set to 1
debug_lvl = 1;
}
if (Root == 0) { // Then this is the root FDM
Root = new FGPropertyManager; // Create the property manager
StandAlone = true;
}
if (FDMctr == 0) {
FDMctr = new unsigned int; // Create and initialize the child FDM counter
(*FDMctr) = 0;
}
// Store this FDM's ID
IdFDM = (*FDMctr); // The main (parent) JSBSim instance is always the "zeroth"
// Prepare FDMctr for the next child FDM id
(*FDMctr)++; // instance. "child" instances are loaded last.
FGPropertyNode* instanceRoot = Root->GetNode("/fdm/jsbsim",IdFDM,true);
instance = new FGPropertyManager(instanceRoot);
Debug(0);
// this is to catch errors in binding member functions to the property tree.
try {
Allocate();
} catch ( string msg ) {
cout << "Caught error: " << msg << endl;
exit(1);
}
trim_status = false;
ta_mode = 99;
Constructing = true;
typedef int (FGFDMExec::*iPMF)(void) const;
// typedef double (FGFDMExec::*dPMF)(void) const;
// typedef unsigned int (FGFDMExec::*uiPMF)(void) const;
// instance->Tie("simulation/do_trim_analysis", this, (iPMF)0, &FGFDMExec::DoTrimAnalysis, false);
instance->Tie("simulation/do_simple_trim", this, (iPMF)0, &FGFDMExec::DoTrim, false);
instance->Tie("simulation/do_simplex_trim", this, (iPMF)0, &FGFDMExec::DoSimplexTrim);
instance->Tie("simulation/do_linearization", this, (iPMF)0, &FGFDMExec::DoLinearization);
instance->Tie("simulation/reset", (int*)&ResetMode);
instance->Tie("simulation/randomseed", this, (iPMF)0, &FGFDMExec::SRand, false);
instance->Tie("simulation/terminate", (int *)&Terminate);
instance->Tie("simulation/sim-time-sec", this, &FGFDMExec::GetSimTime);
instance->Tie("simulation/dt", this, &FGFDMExec::GetDeltaT);
instance->Tie("simulation/jsbsim-debug", this, &FGFDMExec::GetDebugLevel, &FGFDMExec::SetDebugLevel);
instance->Tie("simulation/frame", (int *)&Frame, false);
// simplex trim properties
instanceRoot->SetDouble("trim/solver/rtol",0.0001);
instanceRoot->SetDouble("trim/solver/speed",2);
instanceRoot->SetDouble("trim/solver/abstol",0.001);
instanceRoot->SetDouble("trim/solver/iterMax",2000);
instanceRoot->SetInt("trim/solver/debugLevel",0);
instanceRoot->SetDouble("trim/solver/random",0);
instanceRoot->SetBool("trim/solver/showSimplex",false);
instanceRoot->SetBool("trim/solver/showConvergence",false);
instanceRoot->SetBool("trim/solver/pause",false);
instanceRoot->SetBool("trim/solver/variablePropPitch",false);
instanceRoot->SetDouble("trim/solver/throttleGuess",0.50);
instanceRoot->SetDouble("trim/solver/throttleMin",0.0);
instanceRoot->SetDouble("trim/solver/throttleMax",1.0);
instanceRoot->SetDouble("trim/solver/throttleStep",0.1);
instanceRoot->SetDouble("trim/solver/aileronGuess",0);
instanceRoot->SetDouble("trim/solver/aileronMin",-1.00);
instanceRoot->SetDouble("trim/solver/aileronMax",1.00);
instanceRoot->SetDouble("trim/solver/aileronStep",0.1);
instanceRoot->SetDouble("trim/solver/rudderGuess",0);
instanceRoot->SetDouble("trim/solver/rudderMin",-1.00);
instanceRoot->SetDouble("trim/solver/rudderMax",1.00);
instanceRoot->SetDouble("trim/solver/rudderStep",0.1);
instanceRoot->SetDouble("trim/solver/elevatorGuess",-0.1);
instanceRoot->SetDouble("trim/solver/elevatorMin",-1.0);
instanceRoot->SetDouble("trim/solver/elevatorMax",1.0);
instanceRoot->SetDouble("trim/solver/elevatorStep",0.1);
instanceRoot->SetDouble("trim/solver/alphaGuess",0.05);
instanceRoot->SetDouble("trim/solver/alphaMin",-0.1);
instanceRoot->SetDouble("trim/solver/alphaMax",.18);
instanceRoot->SetDouble("trim/solver/alphaStep",0.05);
instanceRoot->SetDouble("trim/solver/betaGuess",0);
instanceRoot->SetDouble("trim/solver/betaMin",-0.1);
instanceRoot->SetDouble("trim/solver/betaMax",0.1);
instanceRoot->SetDouble("trim/solver/betaStep",0.0001);
Constructing = false;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGFDMExec::~FGFDMExec()
{
try {
Unbind();
DeAllocate();
delete instance;
if (IdFDM == 0) { // Meaning this is no child FDM
if(Root != 0) {
if(StandAlone)
delete Root;
Root = 0;
}
if(FDMctr != 0) {
delete FDMctr;
FDMctr = 0;
}
}
} catch ( string msg ) {
cout << "Caught error: " << msg << endl;
}
for (unsigned int i=1; i<ChildFDMList.size(); i++) delete ChildFDMList[i]->exec;
ChildFDMList.clear();
PropertyCatalog.clear();
if (FDMctr > 0) (*FDMctr)--;
Debug(1);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::Allocate(void)
{
bool result=true;
Models.resize(eNumStandardModels);
// See the eModels enum specification in the header file. The order of the enums
// specifies the order of execution. The Models[] vector is the primary
// storage array for the list of models.
Models[ePropagate] = new FGPropagate(this);
Models[eInput] = new FGInput(this);
Models[eInertial] = new FGInertial(this);
Models[eAtmosphere] = new FGStandardAtmosphere(this);
Models[eWinds] = new FGWinds(this);
Models[eAuxiliary] = new FGAuxiliary(this);
Models[eSystems] = new FGFCS(this);
Models[ePropulsion] = new FGPropulsion(this);
Models[eAerodynamics] = new FGAerodynamics (this);
Models[eGroundReactions] = new FGGroundReactions(this);
Models[eExternalReactions] = new FGExternalReactions(this);
Models[eBuoyantForces] = new FGBuoyantForces(this);
Models[eMassBalance] = new FGMassBalance(this);
Models[eAircraft] = new FGAircraft(this);
Models[eAccelerations] = new FGAccelerations(this);
Models[eOutput] = new FGOutput(this);
// Assign the Model shortcuts for internal executive use only.
Propagate = (FGPropagate*)Models[ePropagate];
Inertial = (FGInertial*)Models[eInertial];
Atmosphere = (FGAtmosphere*)Models[eAtmosphere];
Winds = (FGWinds*)Models[eWinds];
Auxiliary = (FGAuxiliary*)Models[eAuxiliary];
FCS = (FGFCS*)Models[eSystems];
Propulsion = (FGPropulsion*)Models[ePropulsion];
Aerodynamics = (FGAerodynamics*)Models[eAerodynamics];
GroundReactions = (FGGroundReactions*)Models[eGroundReactions];
ExternalReactions = (FGExternalReactions*)Models[eExternalReactions];
BuoyantForces = (FGBuoyantForces*)Models[eBuoyantForces];
MassBalance = (FGMassBalance*)Models[eMassBalance];
Aircraft = (FGAircraft*)Models[eAircraft];
Accelerations = (FGAccelerations*)Models[eAccelerations];
Output = (FGOutput*)Models[eOutput];
// Initialize planet (environment) constants
LoadPlanetConstants();
GetGroundCallback()->SetSeaLevelRadius(Inertial->GetRefRadius());
// Initialize models
for (unsigned int i = 0; i < Models.size(); i++) {
// The Output model must not be initialized prior to IC loading
if (i == eOutput) continue;
LoadInputs(i);
Models[i]->InitModel();
}
IC = new FGInitialCondition(this);
modelLoaded = false;
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::DeAllocate(void)
{
for (unsigned int i=0; i<eNumStandardModels; i++) delete Models[i];
Models.clear();
delete Script;
delete IC;
delete Trim;
Error = 0;
modelLoaded = false;
return modelLoaded;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::Schedule(FGModel* model, int rate)
{
model->SetRate(rate);
Models.push_back(model);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::Run(void)
{
bool success=true;
Debug(2);
for (unsigned int i=1; i<ChildFDMList.size(); i++) {
ChildFDMList[i]->AssignState( (FGPropagate*)Models[ePropagate] ); // Transfer state to the child FDM
ChildFDMList[i]->Run();
}
IncrTime();
// returns true if success, false if complete
if (Script != 0 && !IntegrationSuspended()) success = Script->RunScript();
for (unsigned int i = 0; i < Models.size(); i++) {
LoadInputs(i);
Models[i]->Run(holding);
}
if (ResetMode) {
if (ResetMode == 1) Output->SetStartNewOutput();
ResetMode = 0;
ResetToInitialConditions();
}
if (Terminate) success = false;
return success;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::LoadInputs(unsigned int idx)
{
switch(idx) {
case ePropagate:
Propagate->in.vPQRidot = Accelerations->GetPQRidot();
Propagate->in.vQtrndot = Accelerations->GetQuaterniondot();
Propagate->in.vUVWidot = Accelerations->GetUVWidot();
Propagate->in.DeltaT = dT;
break;
case eInput:
break;
case eInertial:
Inertial->in.Radius = Propagate->GetRadius();
Inertial->in.Latitude = Propagate->GetLatitude();
break;
case eAtmosphere:
Atmosphere->in.altitudeASL = Propagate->GetAltitudeASL();
break;
case eWinds:
Winds->in.AltitudeASL = Propagate->GetAltitudeASL();
Winds->in.DistanceAGL = Propagate->GetDistanceAGL();
Winds->in.Tl2b = Propagate->GetTl2b();
Winds->in.Tw2b = Auxiliary->GetTw2b();
Winds->in.V = Auxiliary->GetVt();
Winds->in.totalDeltaT = dT * Winds->GetRate();
break;
case eAuxiliary:
Auxiliary->in.Pressure = Atmosphere->GetPressure();
Auxiliary->in.Density = Atmosphere->GetDensity();
Auxiliary->in.DensitySL = Atmosphere->GetDensitySL();
Auxiliary->in.PressureSL = Atmosphere->GetPressureSL();
Auxiliary->in.Temperature = Atmosphere->GetTemperature();
Auxiliary->in.SoundSpeed = Atmosphere->GetSoundSpeed();
Auxiliary->in.KinematicViscosity = Atmosphere->GetKinematicViscosity();
Auxiliary->in.DistanceAGL = Propagate->GetDistanceAGL();
Auxiliary->in.Mass = MassBalance->GetMass();
Auxiliary->in.Tl2b = Propagate->GetTl2b();
Auxiliary->in.Tb2l = Propagate->GetTb2l();
Auxiliary->in.vPQR = Propagate->GetPQR();
Auxiliary->in.vPQRdot = Accelerations->GetPQRdot();
Auxiliary->in.vUVW = Propagate->GetUVW();
Auxiliary->in.vUVWdot = Accelerations->GetUVWdot();
Auxiliary->in.vVel = Propagate->GetVel();
Auxiliary->in.vBodyAccel = Accelerations->GetBodyAccel();
Auxiliary->in.ToEyePt = MassBalance->StructuralToBody(Aircraft->GetXYZep());
Auxiliary->in.VRPBody = MassBalance->StructuralToBody(Aircraft->GetXYZvrp());
Auxiliary->in.RPBody = MassBalance->StructuralToBody(Aircraft->GetXYZrp());
Auxiliary->in.vFw = Aerodynamics->GetvFw();
Auxiliary->in.vLocation = Propagate->GetLocation();
Auxiliary->in.CosTht = Propagate->GetCosEuler(eTht);
Auxiliary->in.SinTht = Propagate->GetSinEuler(eTht);
Auxiliary->in.CosPhi = Propagate->GetCosEuler(ePhi);
Auxiliary->in.SinPhi = Propagate->GetSinEuler(ePhi);
Auxiliary->in.Psi = Propagate->GetEuler(ePsi);
Auxiliary->in.TotalWindNED = Winds->GetTotalWindNED();
Auxiliary->in.TurbPQR = Winds->GetTurbPQR();
Auxiliary->in.WindPsi = Winds->GetWindPsi();
Auxiliary->in.Vwind = Winds->GetTotalWindNED().Magnitude();
break;
case eSystems:
// Dynamic inputs come into the components that FCS manages through properties
break;
case ePropulsion:
Propulsion->in.SLPressure = Atmosphere->GetPressureSL();
Propulsion->in.Pressure = Atmosphere->GetPressure();
Propulsion->in.PressureRatio = Atmosphere->GetPressureRatio();
Propulsion->in.Temperature = Atmosphere->GetTemperature();
Propulsion->in.DensityRatio = Atmosphere->GetDensityRatio();
Propulsion->in.Density = Atmosphere->GetDensity();
Propulsion->in.Soundspeed = Atmosphere->GetSoundSpeed();
Propulsion->in.TotalPressure = Auxiliary->GetTotalPressure();
Propulsion->in.TotalTempearture = Auxiliary->GetTotalTemperature();
Propulsion->in.Vc = Auxiliary->GetVcalibratedKTS();
Propulsion->in.Vt = Auxiliary->GetVt();
Propulsion->in.qbar = Auxiliary->Getqbar();
Propulsion->in.TAT_c = Auxiliary->GetTAT_C();
Propulsion->in.AeroUVW = Auxiliary->GetAeroUVW();
Propulsion->in.AeroPQR = Auxiliary->GetAeroPQR();
Propulsion->in.alpha = Auxiliary->Getalpha();
Propulsion->in.beta = Auxiliary->Getbeta();
Propulsion->in.TotalDeltaT = dT * Propulsion->GetRate();
Propulsion->in.ThrottlePos = FCS->GetThrottlePos();
Propulsion->in.MixturePos = FCS->GetMixturePos();
Propulsion->in.ThrottleCmd = FCS->GetThrottleCmd();
Propulsion->in.MixtureCmd = FCS->GetMixtureCmd();
Propulsion->in.PropAdvance = FCS->GetPropAdvance();
Propulsion->in.PropFeather = FCS->GetPropFeather();
Propulsion->in.H_agl = Propagate->GetDistanceAGL();
Propulsion->in.PQR = Propagate->GetPQR();
break;
case eAerodynamics:
Aerodynamics->in.Alpha = Auxiliary->Getalpha();
Aerodynamics->in.Beta = Auxiliary->Getbeta();
Aerodynamics->in.Qbar = Auxiliary->Getqbar();
Aerodynamics->in.Vt = Auxiliary->GetVt();
Aerodynamics->in.Tb2w = Auxiliary->GetTb2w();
Aerodynamics->in.Tw2b = Auxiliary->GetTw2b();
Aerodynamics->in.RPBody = MassBalance->StructuralToBody(Aircraft->GetXYZrp());
break;
case eGroundReactions:
// There are no external inputs to this model.
GroundReactions->in.Vground = Auxiliary->GetVground();
GroundReactions->in.VcalibratedKts = Auxiliary->GetVcalibratedKTS();
GroundReactions->in.Temperature = Atmosphere->GetTemperature();
GroundReactions->in.TakeoffThrottle = (FCS->GetThrottlePos().size() > 0) ? (FCS->GetThrottlePos(0) > 0.90) : false;
GroundReactions->in.SteerPosDeg = FCS->GetSteerPosDeg();
GroundReactions->in.BrakePos = FCS->GetBrakePos();
GroundReactions->in.FCSGearPos = FCS->GetGearPos();
GroundReactions->in.EmptyWeight = MassBalance->GetEmptyWeight();
GroundReactions->in.Tb2l = Propagate->GetTb2l();
GroundReactions->in.Tec2l = Propagate->GetTec2l();
GroundReactions->in.Tec2b = Propagate->GetTec2b();
GroundReactions->in.PQR = Propagate->GetPQR();
GroundReactions->in.UVW = Propagate->GetUVW();
GroundReactions->in.DistanceAGL = Propagate->GetDistanceAGL();
GroundReactions->in.DistanceASL = Propagate->GetAltitudeASL();
GroundReactions->in.TotalDeltaT = dT * GroundReactions->GetRate();
GroundReactions->in.WOW = GroundReactions->GetWOW();
GroundReactions->in.Location = Propagate->GetLocation();
GroundReactions->in.vXYZcg = MassBalance->GetXYZcg();
break;
case eExternalReactions:
// There are no external inputs to this model.
break;
case eBuoyantForces:
BuoyantForces->in.Density = Atmosphere->GetDensity();
BuoyantForces->in.Pressure = Atmosphere->GetPressure();
BuoyantForces->in.Temperature = Atmosphere->GetTemperature();
BuoyantForces->in.gravity = Inertial->gravity();
break;
case eMassBalance:
MassBalance->in.GasInertia = BuoyantForces->GetGasMassInertia();
MassBalance->in.GasMass = BuoyantForces->GetGasMass();
MassBalance->in.GasMoment = BuoyantForces->GetGasMassMoment();
MassBalance->in.TanksWeight = Propulsion->GetTanksWeight();
MassBalance->in.TanksMoment = Propulsion->GetTanksMoment();
MassBalance->in.TankInertia = Propulsion->CalculateTankInertias();
break;
case eAircraft:
Aircraft->in.AeroForce = Aerodynamics->GetForces();
Aircraft->in.PropForce = Propulsion->GetForces();
Aircraft->in.GroundForce = GroundReactions->GetForces();
Aircraft->in.ExternalForce = ExternalReactions->GetForces();
Aircraft->in.BuoyantForce = BuoyantForces->GetForces();
Aircraft->in.AeroMoment = Aerodynamics->GetMoments();
Aircraft->in.PropMoment = Propulsion->GetMoments();
Aircraft->in.GroundMoment = GroundReactions->GetMoments();
Aircraft->in.ExternalMoment = ExternalReactions->GetMoments();
Aircraft->in.BuoyantMoment = BuoyantForces->GetMoments();
break;
case eAccelerations:
Accelerations->in.J = MassBalance->GetJ();
Accelerations->in.Jinv = MassBalance->GetJinv();
Accelerations->in.Ti2b = Propagate->GetTi2b();
Accelerations->in.Tb2i = Propagate->GetTb2i();
Accelerations->in.Tec2b = Propagate->GetTec2b();
Accelerations->in.Tec2i = Propagate->GetTec2i();
Accelerations->in.qAttitudeECI = Propagate->GetQuaternionECI();
Accelerations->in.Moment = Aircraft->GetMoments();
Accelerations->in.GroundMoment = GroundReactions->GetMoments();
Accelerations->in.Force = Aircraft->GetForces();
Accelerations->in.GroundForce = GroundReactions->GetForces();
Accelerations->in.GAccel = Inertial->GetGAccel(Propagate->GetRadius());
Accelerations->in.J2Grav = Inertial->GetGravityJ2(Propagate->GetLocation());
Accelerations->in.vPQRi = Propagate->GetPQRi();
Accelerations->in.vPQR = Propagate->GetPQR();
Accelerations->in.vUVW = Propagate->GetUVW();
Accelerations->in.vInertialPosition = Propagate->GetInertialPosition();
Accelerations->in.DeltaT = dT;
Accelerations->in.Mass = MassBalance->GetMass();
Accelerations->in.MultipliersList = GroundReactions->GetMultipliersList();
Accelerations->in.TerrainVelocity = Propagate->GetTerrainVelocity();
Accelerations->in.TerrainAngularVel = Propagate->GetTerrainAngularVelocity();
break;
default:
break;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::LoadPlanetConstants(void)
{
Propagate->in.vOmegaPlanet = Inertial->GetOmegaPlanet();
Accelerations->in.vOmegaPlanet = Inertial->GetOmegaPlanet();
Propagate->in.SemiMajor = Inertial->GetSemimajor();
Propagate->in.SemiMinor = Inertial->GetSemiminor();
Auxiliary->in.SLGravity = Inertial->SLgravity();
Auxiliary->in.ReferenceRadius = Inertial->GetRefRadius();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::LoadModelConstants(void)
{
Winds->in.wingspan = Aircraft->GetWingSpan();
FCS->in.NumGear = GroundReactions->GetNumGearUnits();
Aerodynamics->in.Wingarea = Aircraft->GetWingArea();
Aerodynamics->in.Wingchord = Aircraft->Getcbar();
Aerodynamics->in.Wingincidence = Aircraft->GetWingIncidence();
Aerodynamics->in.Wingspan = Aircraft->GetWingSpan();
Auxiliary->in.Wingspan = Aircraft->GetWingSpan();
Auxiliary->in.Wingchord = Aircraft->Getcbar();
GroundReactions->in.vXYZcg = MassBalance->GetXYZcg();
LoadPlanetConstants();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// This call will cause the sim time to reset to 0.0
bool FGFDMExec::RunIC(void)
{
FGPropulsion* propulsion = (FGPropulsion*)Models[ePropulsion];
if (!trim_status)
Models[eOutput]->InitModel();
SuspendIntegration(); // saves the integration rate, dt, then sets it to 0.0.
Initialize(IC);
Run();
ResumeIntegration(); // Restores the integration rate to what it was.
for (unsigned int i=0; i<IC->GetNumEnginesRunning(); i++)
propulsion->InitRunning(IC->GetEngineRunning(i));
return true;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::Initialize(FGInitialCondition *FGIC)
{
Setsim_time(0.0);
Propagate->SetInitialState( FGIC );
LoadInputs(eInertial);
Inertial->Run(false);
LoadInputs(eAccelerations);
Accelerations->Run(false);
LoadInputs(ePropagate);
Propagate->InitializeDerivatives();
Winds->SetWindNED(FGIC->GetWindNEDFpsIC());
LoadInputs(eMassBalance);
MassBalance->Run(false);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::ResetToInitialConditions(void)
{
if (Constructing) return;
for (unsigned int i = 0; i < Models.size(); i++) {
// The Output model will be initialized during the RunIC() execution
if (i == eOutput) continue;
LoadInputs(i);
Models[i]->InitModel();
}
if (Script) Script->ResetEvents();
RunIC();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
vector <string> FGFDMExec::EnumerateFDMs(void)
{
vector <string> FDMList;
FGAircraft* Aircraft = (FGAircraft*)Models[eAircraft];
FDMList.push_back(Aircraft->GetAircraftName());
for (unsigned int i=1; i<ChildFDMList.size(); i++) {
FDMList.push_back(ChildFDMList[i]->exec->GetAircraft()->GetAircraftName());
}
return FDMList;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::LoadScript(const string& script, double deltaT, const string initfile)
{
bool result;
Script = new FGScript(this);
result = Script->LoadScript(RootDir + script, deltaT, initfile);
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::LoadModel(const string& AircraftPath, const string& EnginePath, const string& SystemsPath,
const string& model, bool addModelToPath)
{
FGFDMExec::AircraftPath = RootDir + AircraftPath;
FGFDMExec::EnginePath = RootDir + EnginePath;
FGFDMExec::SystemsPath = RootDir + SystemsPath;
return LoadModel(model, addModelToPath);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::LoadModel(const string& model, bool addModelToPath)
{
string token;
string aircraftCfgFileName;
Element* element = 0L;
bool result = false; // initialize result to false, indicating input file not yet read
modelName = model; // Set the class modelName attribute
if( AircraftPath.empty() || EnginePath.empty() || SystemsPath.empty()) {
cerr << "Error: attempted to load aircraft with undefined ";
cerr << "aircraft, engine, and system paths" << endl;
return false;
}
FullAircraftPath = AircraftPath;
if (addModelToPath) FullAircraftPath += "/" + model;
aircraftCfgFileName = FullAircraftPath + "/" + model + ".xml";
if (modelLoaded) {
DeAllocate();
Allocate();
}
int saved_debug_lvl = debug_lvl;
FGXMLFileRead XMLFileRead;
Element *document = XMLFileRead.LoadXMLDocument(aircraftCfgFileName); // "document" is a class member
if (document) {
if (IsChild) debug_lvl = 0;
ReadPrologue(document);
if (IsChild) debug_lvl = saved_debug_lvl;
// Process the fileheader element in the aircraft config file. This element is OPTIONAL.
element = document->FindElement("fileheader");
if (element) {
result = ReadFileHeader(element);
if (!result) {
cerr << endl << "Aircraft fileheader element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
if (IsChild) debug_lvl = 0;
// Process the metrics element. This element is REQUIRED.
element = document->FindElement("metrics");
if (element) {
result = ((FGAircraft*)Models[eAircraft])->Load(element);
if (!result) {
cerr << endl << "Aircraft metrics element has problems in file " << aircraftCfgFileName << endl;
return result;
}
} else {
cerr << endl << "No metrics element was found in the aircraft config file." << endl;
return false;
}
// Process the mass_balance element. This element is REQUIRED.
element = document->FindElement("mass_balance");
if (element) {
result = ((FGMassBalance*)Models[eMassBalance])->Load(element);
if (!result) {
cerr << endl << "Aircraft mass_balance element has problems in file " << aircraftCfgFileName << endl;
return result;
}
} else {
cerr << endl << "No mass_balance element was found in the aircraft config file." << endl;
return false;
}
// Process the ground_reactions element. This element is REQUIRED.
element = document->FindElement("ground_reactions");
if (element) {
result = ((FGGroundReactions*)Models[eGroundReactions])->Load(element);
if (!result) {
cerr << endl << "Aircraft ground_reactions element has problems in file " << aircraftCfgFileName << endl;
return result;
}
((FGFCS*)Models[eSystems])->AddGear(((FGGroundReactions*)Models[eGroundReactions])->GetNumGearUnits());
} else {
cerr << endl << "No ground_reactions element was found in the aircraft config file." << endl;
return false;
}
// Process the external_reactions element. This element is OPTIONAL.
element = document->FindElement("external_reactions");
if (element) {
result = ((FGExternalReactions*)Models[eExternalReactions])->Load(element);
if (!result) {
cerr << endl << "Aircraft external_reactions element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
// Process the buoyant_forces element. This element is OPTIONAL.
element = document->FindElement("buoyant_forces");
if (element) {
result = ((FGBuoyantForces*)Models[eBuoyantForces])->Load(element);
if (!result) {
cerr << endl << "Aircraft buoyant_forces element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
// Process the propulsion element. This element is OPTIONAL.
element = document->FindElement("propulsion");
if (element) {
result = ((FGPropulsion*)Models[ePropulsion])->Load(element);
if (!result) {
cerr << endl << "Aircraft propulsion element has problems in file " << aircraftCfgFileName << endl;
return result;
}
for (unsigned int i=0; i<((FGPropulsion*)Models[ePropulsion])->GetNumEngines(); i++)
((FGFCS*)Models[eSystems])->AddThrottle();
}
// Process the system element[s]. This element is OPTIONAL, and there may be more than one.
element = document->FindElement("system");
while (element) {
result = ((FGFCS*)Models[eSystems])->Load(element, FGFCS::stSystem);
if (!result) {
cerr << endl << "Aircraft system element has problems in file " << aircraftCfgFileName << endl;
return result;
}
element = document->FindNextElement("system");
}
// Process the autopilot element. This element is OPTIONAL.
element = document->FindElement("autopilot");
if (element) {
result = ((FGFCS*)Models[eSystems])->Load(element, FGFCS::stAutoPilot);
if (!result) {
cerr << endl << "Aircraft autopilot element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
// Process the flight_control element. This element is OPTIONAL.
element = document->FindElement("flight_control");
if (element) {
result = ((FGFCS*)Models[eSystems])->Load(element, FGFCS::stFCS);
if (!result) {
cerr << endl << "Aircraft flight_control element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
// Process the aerodynamics element. This element is OPTIONAL, but almost always expected.
element = document->FindElement("aerodynamics");
if (element) {
result = ((FGAerodynamics*)Models[eAerodynamics])->Load(element);
if (!result) {
cerr << endl << "Aircraft aerodynamics element has problems in file " << aircraftCfgFileName << endl;
return result;
}
} else {
cerr << endl << "No expected aerodynamics element was found in the aircraft config file." << endl;
}
// Process the input element. This element is OPTIONAL.
element = document->FindElement("input");
if (element) {
result = ((FGInput*)Models[eInput])->Load(element);
if (!result) {
cerr << endl << "Aircraft input element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
// Process the output element[s]. This element is OPTIONAL, and there may be more than one.
element = document->FindElement("output");
while (element) {
string output_file_name = aircraftCfgFileName;
if (!element->GetAttributeValue("file").empty()) {
output_file_name = RootDir + element->GetAttributeValue("file");
result = ((FGOutput*)Models[eOutput])->SetDirectivesFile(output_file_name);
}
else
result = ((FGOutput*)Models[eOutput])->Load(element);
if (!result) {
cerr << endl << "Aircraft output element has problems in file " << output_file_name << endl;
return result;
}
element = document->FindNextElement("output");
}
// Lastly, process the child element. This element is OPTIONAL - and NOT YET SUPPORTED.
element = document->FindElement("child");
if (element) {
result = ReadChild(element);
if (!result) {
cerr << endl << "Aircraft child element has problems in file " << aircraftCfgFileName << endl;
return result;
}
}
// Since all vehicle characteristics have been loaded, place the values in the Inputs
// structure for the FGModel-derived classes.
LoadModelConstants();
modelLoaded = true;
if (debug_lvl > 0) {
LoadInputs(eMassBalance); // Update all input mass properties for the report.
Models[eMassBalance]->Run(false); // Update all mass properties for the report.
LoadInputs(ePropulsion); // Update propulsion properties for the report.
Models[ePropulsion]->Run(false); // Update propulsion properties for the report.
LoadInputs(eMassBalance); // Update all (one more time) input mass properties for the report.
Models[eMassBalance]->Run(false); // Update all (one more time) mass properties for the report.
((FGMassBalance*)Models[eMassBalance])->GetMassPropertiesReport();
cout << endl << fgblue << highint
<< "End of vehicle configuration loading." << endl
<< "-------------------------------------------------------------------------------"
<< reset << endl;
}
if (IsChild) debug_lvl = saved_debug_lvl;
} else {
cerr << fgred
<< " JSBSim failed to open the configuration file: " << aircraftCfgFileName
<< fgdef << endl;
}
for (unsigned int i=0; i< Models.size(); i++) LoadInputs(i);
if (result) {
struct PropertyCatalogStructure masterPCS;
masterPCS.base_string = "";
masterPCS.node = Root->GetNode();
BuildPropertyCatalog(&masterPCS);
}
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
string FGFDMExec::GetPropulsionTankReport()
{
return ((FGPropulsion*)Models[ePropulsion])->GetPropulsionTankReport();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::BuildPropertyCatalog(struct PropertyCatalogStructure* pcs)
{
struct PropertyCatalogStructure* pcsNew = new struct PropertyCatalogStructure;
int node_idx = 0;
for (int i=0; i<pcs->node->nChildren(); i++) {
string access="";
pcsNew->base_string = pcs->base_string + "/" + pcs->node->getChild(i)->getName();
node_idx = pcs->node->getChild(i)->getIndex();
if (node_idx != 0) {
pcsNew->base_string = CreateIndexedPropertyName(pcsNew->base_string, node_idx);
}
if (pcs->node->getChild(i)->nChildren() == 0) {
if (pcsNew->base_string.substr(0,12) == string("/fdm/jsbsim/")) {
pcsNew->base_string = pcsNew->base_string.erase(0,12);
}
if (pcs->node->getChild(i)->getAttribute(SGPropertyNode::READ)) access="R";
if (pcs->node->getChild(i)->getAttribute(SGPropertyNode::WRITE)) access+="W";
PropertyCatalog.push_back(pcsNew->base_string+" ("+access+")");
} else {
pcsNew->node = (FGPropertyNode*)pcs->node->getChild(i);
BuildPropertyCatalog(pcsNew);
}
}
delete pcsNew;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
string FGFDMExec::QueryPropertyCatalog(const string& in)
{
string results="";
for (unsigned i=0; i<PropertyCatalog.size(); i++) {
if (PropertyCatalog[i].find(in) != string::npos) results += PropertyCatalog[i] + "\n";
}
if (results.empty()) return "No matches found\n";
return results;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::PrintPropertyCatalog(void)
{
cout << endl;
cout << " " << fgblue << highint << underon << "Property Catalog for "
<< modelName << reset << endl << endl;
for (unsigned i=0; i<PropertyCatalog.size(); i++) {
cout << " " << PropertyCatalog[i] << endl;
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::ReadFileHeader(Element* el)
{
bool result = true; // true for success
if (debug_lvl == 0) return result;
if (IsChild) {
cout << endl <<highint << fgblue << "Reading child model: " << IdFDM << reset << endl << endl;
}
if (el->FindElement("description"))
cout << " Description: " << el->FindElement("description")->GetDataLine() << endl;
if (el->FindElement("author"))
cout << " Model Author: " << el->FindElement("author")->GetDataLine() << endl;
if (el->FindElement("filecreationdate"))
cout << " Creation Date: " << el->FindElement("filecreationdate")->GetDataLine() << endl;
if (el->FindElement("version"))
cout << " Version: " << el->FindElement("version")->GetDataLine() << endl;
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::ReadPrologue(Element* el) // el for ReadPrologue is the document element
{
bool result = true; // true for success
if (!el) return false;
string AircraftName = el->GetAttributeValue("name");
((FGAircraft*)Models[eAircraft])->SetAircraftName(AircraftName);
if (debug_lvl & 1) cout << underon << "Reading Aircraft Configuration File"
<< underoff << ": " << highint << AircraftName << normint << endl;
CFGVersion = el->GetAttributeValue("version");
Release = el->GetAttributeValue("release");
if (debug_lvl & 1)
cout << " Version: " << highint << CFGVersion
<< normint << endl;
if (CFGVersion != needed_cfg_version) {
cerr << endl << fgred << "YOU HAVE AN INCOMPATIBLE CFG FILE FOR THIS AIRCRAFT."
" RESULTS WILL BE UNPREDICTABLE !!" << endl;
cerr << "Current version needed is: " << needed_cfg_version << endl;
cerr << " You have version: " << CFGVersion << endl << fgdef << endl;
return false;
}
if (Release == "ALPHA" && (debug_lvl & 1)) {
cout << endl << endl
<< highint << "This aircraft model is an " << fgred << Release
<< reset << highint << " release!!!" << endl << endl << reset
<< "This aircraft model may not even properly load, and probably"
<< " will not fly as expected." << endl << endl
<< fgred << highint << "Use this model for development purposes ONLY!!!"
<< normint << reset << endl << endl;
} else if (Release == "BETA" && (debug_lvl & 1)) {
cout << endl << endl
<< highint << "This aircraft model is a " << fgred << Release
<< reset << highint << " release!!!" << endl << endl << reset
<< "This aircraft model probably will not fly as expected." << endl << endl
<< fgblue << highint << "Use this model for development purposes ONLY!!!"
<< normint << reset << endl << endl;
} else if (Release == "PRODUCTION" && (debug_lvl & 1)) {
cout << endl << endl
<< highint << "This aircraft model is a " << fgblue << Release
<< reset << highint << " release." << endl << endl << reset;
} else if (debug_lvl & 1) {
cout << endl << endl
<< highint << "This aircraft model is an " << fgred << Release
<< reset << highint << " release!!!" << endl << endl << reset
<< "This aircraft model may not even properly load, and probably"
<< " will not fly as expected." << endl << endl
<< fgred << highint << "Use this model for development purposes ONLY!!!"
<< normint << reset << endl << endl;
}
return result;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bool FGFDMExec::ReadChild(Element* el)
{
// Add a new childData object to the child FDM list
// Populate that childData element with a new FDMExec object
// Set the IsChild flag for that FDMExec object
// Get the aircraft name
// set debug level to print out no additional data for child objects
// Load the model given the aircraft name
// reset debug level to prior setting
string token;
struct childData* child = new childData;
child->exec = new FGFDMExec(Root, FDMctr);
child->exec->SetChild(true);
string childAircraft = el->GetAttributeValue("name");
string sMated = el->GetAttributeValue("mated");
if (sMated == "false") child->mated = false; // child objects are mated by default.
string sInternal = el->GetAttributeValue("internal");
if (sInternal == "true") child->internal = true; // child objects are external by default.
child->exec->SetAircraftPath( AircraftPath );
child->exec->SetEnginePath( EnginePath );
child->exec->SetSystemsPath( SystemsPath );
child->exec->LoadModel(childAircraft);
Element* location = el->FindElement("location");
if (location) {
child->Loc = location->FindElementTripletConvertTo("IN");
} else {
cerr << endl << highint << fgred << " No location was found for this child object!" << reset << endl;
exit(-1);
}
Element* orientation = el->FindElement("orient");
if (orientation) {
child->Orient = orientation->FindElementTripletConvertTo("RAD");
} else if (debug_lvl > 0) {
cerr << endl << highint << " No orientation was found for this child object! Assuming 0,0,0." << reset << endl;
}
ChildFDMList.push_back(child);
return true;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGPropertyManager* FGFDMExec::GetPropertyManager(void)
{
return instance;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGTrim* FGFDMExec::GetTrim(void)
{
delete Trim;
Trim = new FGTrim(this,tNone);
return Trim;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::CheckIncrementalHold(void)
{
// Only check if increment then hold is on
if( IncrementThenHolding ) {
if (TimeStepsUntilHold == 0) {
// Should hold simulation if TimeStepsUntilHold has reached zero
holding = true;
// Still need to decrement TimeStepsUntilHold as value of -1
// indicates that incremental then hold is turned off
IncrementThenHolding = false;
TimeStepsUntilHold--;
} else if ( TimeStepsUntilHold > 0 ) {
// Keep decrementing until 0 is reached
TimeStepsUntilHold--;
}
}
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::DoTrim(int mode)
{
double saved_time;
if (Constructing) return;
if (mode < 0 || mode > JSBSim::tNone) {
cerr << endl << "Illegal trimming mode!" << endl << endl;
return;
}
saved_time = sim_time;
FGTrim trim(this, (JSBSim::TrimMode)mode);
if ( !trim.DoTrim() ) cerr << endl << "Trim Failed" << endl << endl;
trim.Report();
sim_time = saved_time;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::DoSimplexTrim(int mode)
{
double saved_time;
if (Constructing) return;
if (mode < 0 || mode > JSBSim::tNone) {
cerr << endl << "Illegal trimming mode!" << endl << endl;
return;
}
saved_time = sim_time;
FGSimplexTrim trim(this, (JSBSim::TrimMode)mode);
sim_time = saved_time;
Setsim_time(saved_time);
std::cout << "dT: " << dT << std::endl;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::DoLinearization(int mode)
{
double saved_time;
if (Constructing) return;
saved_time = sim_time;
FGLinearization lin(this,mode);
sim_time = saved_time;
Setsim_time(saved_time);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGFDMExec::SRand(int sr)
{
srand(sr);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// The bitmasked value choices are as follows:
// unset: In this case (the default) JSBSim would only print
// out the normally expected messages, essentially echoing
// the config files as they are read. If the environment
// variable is not set, debug_lvl is set to 1 internally
// 0: This requests JSBSim not to output any messages
// whatsoever.
// 1: This value explicity requests the normal JSBSim
// startup messages
// 2: This value asks for a message to be printed out when
// a class is instantiated
// 4: When this value is set, a message is displayed when a
// FGModel object executes its Run() method
// 8: When this value is set, various runtime state variables
// are printed out periodically
// 16: When set various parameters are sanity checked and
// a message is printed out when they go out of bounds
void FGFDMExec::Debug(int from)
{
if (debug_lvl <= 0) return;
if (debug_lvl & 1 && IdFDM == 0) { // Standard console startup message output
if (from == 0) { // Constructor
cout << "\n\n "
<< "JSBSim Flight Dynamics Model v" << JSBSim_version << endl;
cout << " [JSBSim-ML v" << needed_cfg_version << "]\n\n";
cout << "JSBSim startup beginning ...\n\n";
} else if (from == 3) {
cout << "\n\nJSBSim startup complete\n\n";
}
}
if (debug_lvl & 2 ) { // Instantiation/Destruction notification
if (from == 0) cout << "Instantiated: FGFDMExec" << endl;
if (from == 1) cout << "Destroyed: FGFDMExec" << endl;
}
if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
if (from == 2) {
cout << "================== Frame: " << Frame << " Time: "
<< sim_time << " dt: " << dT << endl;
}
}
if (debug_lvl & 8 ) { // Runtime state variables
}
if (debug_lvl & 16) { // Sanity checking
}
if (debug_lvl & 64) {
if (from == 0) { // Constructor
cout << IdSrc << endl;
cout << IdHdr << endl;
}
}
}
}