1
0
Fork 0
flightgear/src/FDM/flight.cxx
2012-08-24 21:24:12 +02:00

896 lines
32 KiB
C++

// flight.cxx -- a general interface to the various flight models
//
// Written by Curtis Olson, started May 1997.
//
// Copyright (C) 1997 Curtis L. Olson - http://www.flightgear.org/~curt
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// $Id$
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "flight.hxx"
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/timing/timestamp.hxx>
#include <simgear/scene/material/mat.hxx>
#include <Scenery/scenery.hxx>
#include <Main/globals.hxx>
#include <Main/fg_props.hxx>
#include <FDM/groundcache.hxx>
static inline void assign(double* ptr, const SGVec3d& vec)
{
ptr[0] = vec[0];
ptr[1] = vec[1];
ptr[2] = vec[2];
}
// Constructor
FGInterface::FGInterface()
{
_setup();
}
FGInterface::FGInterface( double dt )
{
_setup();
}
// Destructor
FGInterface::~FGInterface() {
// unbind(); // FIXME: should be called explicitly
}
int
FGInterface::_calc_multiloop (double dt)
{
// Since some time the simulation time increments we get here are
// already a multiple of the basic update frequency.
// So, there is no need to do our own multiloop rounding with all bad
// roundoff problems when we already have nearly accurate values.
// Only the speedup thing must be still handled here
int hz = fgGetInt("/sim/model-hz");
int multiloop = SGMiscd::roundToInt(dt*hz);
int speedup = fgGetInt("/sim/speed-up");
return multiloop * speedup;
}
/**
* Set default values for the state of the FDM.
*
* This method is invoked by the constructors.
*/
void
FGInterface::_setup ()
{
inited = false;
bound = false;
d_cg_rp_body_v = SGVec3d::zeros();
v_dot_local_v = SGVec3d::zeros();
v_dot_body_v = SGVec3d::zeros();
a_cg_body_v = SGVec3d::zeros();
a_pilot_body_v = SGVec3d::zeros();
n_cg_body_v = SGVec3d::zeros();
v_local_v = SGVec3d::zeros();
v_local_rel_ground_v = SGVec3d::zeros();
v_local_airmass_v = SGVec3d::zeros();
v_wind_body_v = SGVec3d::zeros();
omega_body_v = SGVec3d::zeros();
euler_rates_v = SGVec3d::zeros();
geocentric_rates_v = SGVec3d::zeros();
geodetic_position_v = SGGeod::fromRadM(0, 0, 0);
cartesian_position_v = SGVec3d::fromGeod(geodetic_position_v);
geocentric_position_v = SGGeoc::fromCart(cartesian_position_v);
euler_angles_v = SGVec3d::zeros();
nlf=0;
v_rel_wind=v_true_kts=0;
v_ground_speed=v_equiv_kts=0;
v_calibrated_kts=0;
alpha=beta=0;
gamma_vert_rad=0;
density=mach_number=0;
static_pressure=total_pressure=0;
dynamic_pressure=0;
static_temperature=total_temperature=0;
sea_level_radius=earth_position_angle=0;
runway_altitude=0;
climb_rate=0;
altitude_agl=0;
track=0;
}
void
FGInterface::init () {}
/**
* Initialize the state of the FDM.
*
* Subclasses of FGInterface may do their own, additional initialization,
* but there is some that is common to all. Normally, they should call
* this before they begin their own init to make sure the basic structures
* are set up properly.
*/
void
FGInterface::common_init ()
{
SG_LOG( SG_FLIGHT, SG_INFO, "Start common FDM init" );
set_inited( true );
ground_cache.set_cache_time_offset(globals->get_sim_time_sec());
// Set initial position
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing position..." );
double lon = fgGetDouble("/sim/presets/longitude-deg")
* SGD_DEGREES_TO_RADIANS;
double lat = fgGetDouble("/sim/presets/latitude-deg")
* SGD_DEGREES_TO_RADIANS;
double alt_ft = fgGetDouble("/sim/presets/altitude-ft");
double alt_m = alt_ft * SG_FEET_TO_METER;
set_Longitude( lon );
set_Latitude( lat );
SG_LOG( SG_FLIGHT, SG_INFO, "Checking for lon = "
<< lon*SGD_RADIANS_TO_DEGREES << "deg, lat = "
<< lat*SGD_RADIANS_TO_DEGREES << "deg, alt = "
<< alt_ft << "ft");
double ground_elev_m = get_groundlevel_m(lat, lon, alt_m);
double ground_elev_ft = ground_elev_m * SG_METER_TO_FEET;
_set_Runway_altitude ( ground_elev_ft );
// Set aircraft altitude
if ( fgGetBool("/sim/presets/onground") || alt_ft < ground_elev_ft ) {
fgSetDouble("/position/altitude-ft", ground_elev_ft + 0.1);
set_Altitude( ground_elev_ft + 0.1);
} else {
set_Altitude( alt_ft );
}
// Set ground elevation
SG_LOG( SG_FLIGHT, SG_INFO,
"...initializing ground elevation to " << ground_elev_ft
<< "ft..." );
// Set sea-level radius
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing sea-level radius..." );
SG_LOG( SG_FLIGHT, SG_INFO, " lat = "
<< fgGetDouble("/sim/presets/latitude-deg")
<< " alt = " << get_Altitude() );
double slr = SGGeodesy::SGGeodToSeaLevelRadius(geodetic_position_v);
_set_Sea_level_radius( slr * SG_METER_TO_FEET );
// Set initial Euler angles
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing Euler angles..." );
set_Euler_Angles( fgGetDouble("/sim/presets/roll-deg")
* SGD_DEGREES_TO_RADIANS,
fgGetDouble("/sim/presets/pitch-deg")
* SGD_DEGREES_TO_RADIANS,
fgGetDouble("/sim/presets/heading-deg")
* SGD_DEGREES_TO_RADIANS );
// Set initial velocities
SG_LOG( SG_FLIGHT, SG_INFO, "...initializing velocities..." );
if ( !fgHasNode("/sim/presets/speed-set") ) {
set_V_calibrated_kts(0.0);
} else {
const string speedset = fgGetString("/sim/presets/speed-set");
if ( speedset == "knots" || speedset == "KNOTS" ) {
set_V_calibrated_kts( fgGetDouble("/sim/presets/airspeed-kt") );
} else if ( speedset == "mach" || speedset == "MACH" ) {
set_Mach_number( fgGetDouble("/sim/presets/mach") );
} else if ( speedset == "UVW" || speedset == "uvw" ) {
set_Velocities_Wind_Body(
fgGetDouble("/sim/presets/uBody-fps"),
fgGetDouble("/sim/presets/vBody-fps"),
fgGetDouble("/sim/presets/wBody-fps") );
} else if ( speedset == "NED" || speedset == "ned" ) {
set_Velocities_Local(
fgGetDouble("/sim/presets/speed-north-fps"),
fgGetDouble("/sim/presets/speed-east-fps"),
fgGetDouble("/sim/presets/speed-down-fps") );
} else {
SG_LOG( SG_FLIGHT, SG_ALERT,
"Unrecognized value for /sim/presets/speed-set: "
<< speedset);
set_V_calibrated_kts( 0.0 );
}
}
if ( fgHasNode("/sim/presets/glideslope-deg") )
set_Gamma_vert_rad( fgGetDouble("/sim/presets/glideslope-deg")
* SGD_DEGREES_TO_RADIANS );
else if ( fgHasNode("/sim/presets/speed-set") &&
fgHasNode( "/sim/presets/vertical-speed-fps") )
{
set_Climb_Rate( fgGetDouble("/sim/presets/vertical-speed-fps") );
}
SG_LOG( SG_FLIGHT, SG_INFO, "End common FDM init" );
}
/**
* Bind getters and setters to properties.
*
* The bind() method will be invoked after init(). Note that unlike
* the usual implementations of FGSubsystem::bind(), this method does
* not automatically pick up existing values for the properties at
* bind time; instead, all values are set explicitly in the init()
* method.
*/
void
FGInterface::bind ()
{
bound = true;
_tiedProperties.setRoot(globals->get_props());
// Aircraft position
_tiedProperties.Tie("/position/latitude-deg", this,
&FGInterface::get_Latitude_deg,
&FGInterface::set_Latitude_deg,
false);
fgSetArchivable("/position/latitude-deg");
_tiedProperties.Tie("/position/longitude-deg", this,
&FGInterface::get_Longitude_deg,
&FGInterface::set_Longitude_deg,
false);
fgSetArchivable("/position/longitude-deg");
_tiedProperties.Tie("/position/altitude-ft", this,
&FGInterface::get_Altitude,
&FGInterface::set_Altitude,
false);
fgSetArchivable("/position/altitude-ft");
_tiedProperties.Tie("/position/altitude-agl-ft", this,
&FGInterface::get_Altitude_AGL, &FGInterface::set_AltitudeAGL, false);
fgSetArchivable("/position/ground-elev-ft");
_tiedProperties.Tie("/position/ground-elev-ft", this,
&FGInterface::get_Runway_altitude); // read-only
fgSetArchivable("/position/ground-elev-m");
_tiedProperties.Tie("/position/ground-elev-m", this,
&FGInterface::get_Runway_altitude_m); // read-only
_tiedProperties.Tie("/environment/ground-elevation-m", this,
&FGInterface::get_Runway_altitude_m); // read-only
fgSetArchivable("/position/sea-level-radius-ft");
_tiedProperties.Tie("/position/sea-level-radius-ft", this,
&FGInterface::get_Sea_level_radius,
&FGInterface::_set_Sea_level_radius, false);
// Orientation
_tiedProperties.Tie("/orientation/roll-deg", this,
&FGInterface::get_Phi_deg,
&FGInterface::set_Phi_deg, false);
fgSetArchivable("/orientation/roll-deg");
_tiedProperties.Tie("/orientation/pitch-deg", this,
&FGInterface::get_Theta_deg,
&FGInterface::set_Theta_deg, false);
fgSetArchivable("/orientation/pitch-deg");
_tiedProperties.Tie("/orientation/heading-deg", this,
&FGInterface::get_Psi_deg,
&FGInterface::set_Psi_deg, false);
fgSetArchivable("/orientation/heading-deg");
_tiedProperties.Tie("/orientation/track-deg", this,
&FGInterface::get_Track); // read-only
// Body-axis "euler rates" (rotation speed, but in a funny
// representation).
_tiedProperties.Tie("/orientation/roll-rate-degps", this,
&FGInterface::get_Phi_dot_degps,
&FGInterface::set_Phi_dot_degps, false);
_tiedProperties.Tie("/orientation/pitch-rate-degps", this,
&FGInterface::get_Theta_dot_degps,
&FGInterface::set_Theta_dot_degps, false);
_tiedProperties.Tie("/orientation/yaw-rate-degps", this,
&FGInterface::get_Psi_dot_degps,
&FGInterface::set_Psi_dot_degps, false);
_tiedProperties.Tie("/orientation/p-body", this, &FGInterface::get_P_body); // read-only
_tiedProperties.Tie("/orientation/q-body", this, &FGInterface::get_Q_body); // read-only
_tiedProperties.Tie("/orientation/r-body", this, &FGInterface::get_R_body); // read-only
// Ground speed knots
_tiedProperties.Tie("/velocities/groundspeed-kt", this,
&FGInterface::get_V_ground_speed_kt,
&FGInterface::set_V_ground_speed_kt); // read-only
// Calibrated airspeed
_tiedProperties.Tie("/velocities/airspeed-kt", this,
&FGInterface::get_V_calibrated_kts,
&FGInterface::set_V_calibrated_kts,
false);
_tiedProperties.Tie("/velocities/equivalent-kt", this,
&FGInterface::get_V_equiv_kts); // read-only
// Mach number
_tiedProperties.Tie("/velocities/mach", this,
&FGInterface::get_Mach_number,
&FGInterface::set_Mach_number,
false);
// Local velocities
// _tiedProperties.Tie("/velocities/speed-north-fps", this,
// &FGInterface::get_V_north,
// &FGInterface::set_V_north);
// fgSetArchivable("/velocities/speed-north-fps");
// _tiedProperties.Tie("/velocities/speed-east-fps", this,
// &FGInterface::get_V_east,
// &FGInterface::set_V_east);
// fgSetArchivable("/velocities/speed-east-fps");
// _tiedProperties.Tie("/velocities/speed-down-fps", this,
// &FGInterface::get_V_down,
// &FGInterface::set_V_down);
// fgSetArchivable("/velocities/speed-down-fps");
// FIXME: Temporarily read-only, until the
// incompatibilities between JSBSim and
// LaRCSim are fixed (LaRCSim adds the
// earth's rotation to the east velocity).
_tiedProperties.Tie("/velocities/speed-north-fps", this,
&FGInterface::get_V_north, &FGInterface::set_V_north, false);
_tiedProperties.Tie("/velocities/speed-east-fps", this,
&FGInterface::get_V_east, &FGInterface::set_V_east, false);
_tiedProperties.Tie("/velocities/speed-down-fps", this,
&FGInterface::get_V_down, &FGInterface::set_V_down, false);
_tiedProperties.Tie("/velocities/north-relground-fps", this,
&FGInterface::get_V_north_rel_ground); // read-only
_tiedProperties.Tie("/velocities/east-relground-fps", this,
&FGInterface::get_V_east_rel_ground); // read-only
_tiedProperties.Tie("/velocities/down-relground-fps", this,
&FGInterface::get_V_down_rel_ground); // read-only
// Relative wind
// FIXME: temporarily archivable, until the NED problem is fixed.
_tiedProperties.Tie("/velocities/uBody-fps", this,
&FGInterface::get_uBody,
&FGInterface::set_uBody,
false);
fgSetArchivable("/velocities/uBody-fps");
_tiedProperties.Tie("/velocities/vBody-fps", this,
&FGInterface::get_vBody,
&FGInterface::set_vBody,
false);
fgSetArchivable("/velocities/vBody-fps");
_tiedProperties.Tie("/velocities/wBody-fps", this,
&FGInterface::get_wBody,
&FGInterface::set_wBody,
false);
fgSetArchivable("/velocities/wBody-fps");
// Climb and slip (read-only)
_tiedProperties.Tie("/velocities/vertical-speed-fps", this,
&FGInterface::get_Climb_Rate,
&FGInterface::set_Climb_Rate, false );
_tiedProperties.Tie("/velocities/glideslope", this,
&FGInterface::get_Gamma_vert_rad,
&FGInterface::set_Gamma_vert_rad, false );
_tiedProperties.Tie("/orientation/side-slip-rad", this,
&FGInterface::get_Beta, &FGInterface::_set_Beta, false);
_tiedProperties.Tie("/orientation/side-slip-deg", this,
&FGInterface::get_Beta_deg); // read-only
_tiedProperties.Tie("/orientation/alpha-deg", this,
&FGInterface::get_Alpha_deg, &FGInterface::set_Alpha_deg, false);
_tiedProperties.Tie("/accelerations/nlf", this,
&FGInterface::get_Nlf); // read-only
// NED accelerations
_tiedProperties.Tie("/accelerations/ned/north-accel-fps_sec",
this, &FGInterface::get_V_dot_north); // read-only
_tiedProperties.Tie("/accelerations/ned/east-accel-fps_sec",
this, &FGInterface::get_V_dot_east); // read-only
_tiedProperties.Tie("/accelerations/ned/down-accel-fps_sec",
this, &FGInterface::get_V_dot_down); // read-only
// Pilot accelerations
_tiedProperties.Tie("/accelerations/pilot/x-accel-fps_sec",
this, &FGInterface::get_A_X_pilot, &FGInterface::set_A_X_pilot, false);
_tiedProperties.Tie("/accelerations/pilot/y-accel-fps_sec",
this, &FGInterface::get_A_Y_pilot, &FGInterface::set_A_Y_pilot, false);
_tiedProperties.Tie("/accelerations/pilot/z-accel-fps_sec",
this, &FGInterface::get_A_Z_pilot, &FGInterface::set_A_Z_pilot, false);
_tiedProperties.Tie("/accelerations/n-z-cg-fps_sec",
this, &FGInterface::get_N_Z_cg); // read-only
}
/**
* Unbind any properties bound to this FDM.
*
* This method allows the FDM to release properties so that a new
* FDM can bind them instead.
*/
void
FGInterface::unbind ()
{
_tiedProperties.Untie();
bound = false;
}
/**
* Update the state of the FDM (i.e. run the equations of motion).
*/
void
FGInterface::update (double dt)
{
SG_LOG(SG_FLIGHT, SG_ALERT, "dummy update() ... SHOULDN'T BE CALLED!");
}
void FGInterface::_updatePositionM(const SGVec3d& cartPos)
{
TrackComputer tracker( track, geodetic_position_v );
cartesian_position_v = cartPos;
geodetic_position_v = SGGeod::fromCart(cartesian_position_v);
geocentric_position_v = SGGeoc::fromCart(cartesian_position_v);
_set_Sea_level_radius( SGGeodesy::SGGeodToSeaLevelRadius(geodetic_position_v)*SG_METER_TO_FEET );
_update_ground_elev_at_pos();
}
void FGInterface::_updatePosition(const SGGeod& geod)
{
TrackComputer tracker( track, geodetic_position_v );
geodetic_position_v = geod;
cartesian_position_v = SGVec3d::fromGeod(geodetic_position_v);
geocentric_position_v = SGGeoc::fromCart(cartesian_position_v);
_set_Sea_level_radius( SGGeodesy::SGGeodToSeaLevelRadius(geodetic_position_v)*SG_METER_TO_FEET );
_update_ground_elev_at_pos();
}
void FGInterface::_updatePosition(const SGGeoc& geoc)
{
TrackComputer tracker( track, geodetic_position_v );
geocentric_position_v = geoc;
cartesian_position_v = SGVec3d::fromGeoc(geocentric_position_v);
geodetic_position_v = SGGeod::fromCart(cartesian_position_v);
_set_Sea_level_radius( SGGeodesy::SGGeodToSeaLevelRadius(geodetic_position_v)*SG_METER_TO_FEET );
_update_ground_elev_at_pos();
}
void FGInterface::_updateGeodeticPosition( double lat, double lon, double alt )
{
_updatePosition(SGGeod::fromRadFt(lon, lat, alt));
}
void FGInterface::_updateGeocentricPosition( double lat, double lon,
double alt )
{
_updatePosition(SGGeoc::fromRadFt(lon, lat, get_Sea_level_radius() + alt));
}
void FGInterface::_update_ground_elev_at_pos( void ) {
double groundlevel_m = get_groundlevel_m(geodetic_position_v);
_set_Runway_altitude( groundlevel_m * SG_METER_TO_FEET );
}
// Positions
void FGInterface::set_Latitude(double lat) {
geodetic_position_v.setLatitudeRad(lat);
}
void FGInterface::set_Longitude(double lon) {
geodetic_position_v.setLongitudeRad(lon);
}
void FGInterface::set_Altitude(double alt) {
geodetic_position_v.setElevationFt(alt);
}
void FGInterface::set_AltitudeAGL(double altagl) {
altitude_agl=altagl;
}
// Velocities
void FGInterface::set_V_calibrated_kts(double vc) {
v_calibrated_kts = vc;
}
void FGInterface::set_Mach_number(double mach) {
mach_number = mach;
}
void FGInterface::set_Velocities_Local( double north,
double east,
double down ){
v_local_v[0] = north;
v_local_v[1] = east;
v_local_v[2] = down;
}
void FGInterface::set_Velocities_Wind_Body( double u,
double v,
double w){
v_wind_body_v[0] = u;
v_wind_body_v[1] = v;
v_wind_body_v[2] = w;
}
// Euler angles
void FGInterface::set_Euler_Angles( double phi,
double theta,
double psi ) {
euler_angles_v[0] = phi;
euler_angles_v[1] = theta;
euler_angles_v[2] = psi;
}
// Flight Path
void FGInterface::set_Climb_Rate( double roc) {
climb_rate = roc;
}
void FGInterface::set_Gamma_vert_rad( double gamma) {
gamma_vert_rad = gamma;
}
void FGInterface::set_Static_pressure(double p) { static_pressure = p; }
void FGInterface::set_Static_temperature(double T) { static_temperature = T; }
void FGInterface::set_Density(double rho) { density = rho; }
void FGInterface::set_Velocities_Local_Airmass (double wnorth,
double weast,
double wdown ) {
v_local_airmass_v[0] = wnorth;
v_local_airmass_v[1] = weast;
v_local_airmass_v[2] = wdown;
}
void FGInterface::_busdump(void)
{
SG_LOG(SG_FLIGHT,SG_INFO,"d_cg_rp_body_v: " << d_cg_rp_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_dot_local_v: " << v_dot_local_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_dot_body_v: " << v_dot_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"a_cg_body_v: " << a_cg_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"a_pilot_body_v: " << a_pilot_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"n_cg_body_v: " << n_cg_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_local_v: " << v_local_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_local_rel_ground_v: " << v_local_rel_ground_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_local_airmass_v: " << v_local_airmass_v);
SG_LOG(SG_FLIGHT,SG_INFO,"v_wind_body_v: " << v_wind_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"omega_body_v: " << omega_body_v);
SG_LOG(SG_FLIGHT,SG_INFO,"euler_rates_v: " << euler_rates_v);
SG_LOG(SG_FLIGHT,SG_INFO,"geocentric_rates_v: " << geocentric_rates_v);
SG_LOG(SG_FLIGHT,SG_INFO,"geocentric_position_v: " << geocentric_position_v);
SG_LOG(SG_FLIGHT,SG_INFO,"geodetic_position_v: " << geodetic_position_v);
SG_LOG(SG_FLIGHT,SG_INFO,"euler_angles_v: " << euler_angles_v);
SG_LOG(SG_FLIGHT,SG_INFO,"nlf: " << nlf );
SG_LOG(SG_FLIGHT,SG_INFO,"v_rel_wind: " << v_rel_wind );
SG_LOG(SG_FLIGHT,SG_INFO,"v_true_kts: " << v_true_kts );
SG_LOG(SG_FLIGHT,SG_INFO,"v_ground_speed: " << v_ground_speed );
SG_LOG(SG_FLIGHT,SG_INFO,"v_equiv_kts: " << v_equiv_kts );
SG_LOG(SG_FLIGHT,SG_INFO,"v_calibrated_kts: " << v_calibrated_kts );
SG_LOG(SG_FLIGHT,SG_INFO,"alpha: " << alpha );
SG_LOG(SG_FLIGHT,SG_INFO,"beta: " << beta );
SG_LOG(SG_FLIGHT,SG_INFO,"gamma_vert_rad: " << gamma_vert_rad );
SG_LOG(SG_FLIGHT,SG_INFO,"density: " << density );
SG_LOG(SG_FLIGHT,SG_INFO,"mach_number: " << mach_number );
SG_LOG(SG_FLIGHT,SG_INFO,"static_pressure: " << static_pressure );
SG_LOG(SG_FLIGHT,SG_INFO,"total_pressure: " << total_pressure );
SG_LOG(SG_FLIGHT,SG_INFO,"dynamic_pressure: " << dynamic_pressure );
SG_LOG(SG_FLIGHT,SG_INFO,"static_temperature: " << static_temperature );
SG_LOG(SG_FLIGHT,SG_INFO,"total_temperature: " << total_temperature );
SG_LOG(SG_FLIGHT,SG_INFO,"sea_level_radius: " << sea_level_radius );
SG_LOG(SG_FLIGHT,SG_INFO,"earth_position_angle: " << earth_position_angle );
SG_LOG(SG_FLIGHT,SG_INFO,"runway_altitude: " << runway_altitude );
SG_LOG(SG_FLIGHT,SG_INFO,"climb_rate: " << climb_rate );
SG_LOG(SG_FLIGHT,SG_INFO,"altitude_agl: " << altitude_agl );
}
bool
FGInterface::prepare_ground_cache_m(double startSimTime, double endSimTime,
const double pt[3], double rad)
{
return ground_cache.prepare_ground_cache(startSimTime, endSimTime,
SGVec3d(pt), rad);
}
bool
FGInterface::prepare_ground_cache_ft(double startSimTime, double endSimTime,
const double pt[3], double rad)
{
// Convert units and do the real work.
SGVec3d pt_ft = SG_FEET_TO_METER*SGVec3d(pt);
return ground_cache.prepare_ground_cache(startSimTime, endSimTime,
pt_ft, rad*SG_FEET_TO_METER);
}
bool
FGInterface::is_valid_m(double *ref_time, double pt[3], double *rad)
{
SGVec3d _pt;
bool valid = ground_cache.is_valid(*ref_time, _pt, *rad);
assign(pt, _pt);
return valid;
}
bool FGInterface::is_valid_ft(double *ref_time, double pt[3], double *rad)
{
// Convert units and do the real work.
SGVec3d _pt;
bool found_ground = ground_cache.is_valid(*ref_time, _pt, *rad);
assign(pt, SG_METER_TO_FEET*_pt);
*rad *= SG_METER_TO_FEET;
return found_ground;
}
double
FGInterface::get_cat_m(double t, const double pt[3],
double end[2][3], double vel[2][3])
{
SGVec3d _end[2], _vel[2];
double dist = ground_cache.get_cat(t, SGVec3d(pt), _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], _end[k] );
assign( vel[k], _vel[k] );
}
return dist;
}
double
FGInterface::get_cat_ft(double t, const double pt[3],
double end[2][3], double vel[2][3])
{
// Convert units and do the real work.
SGVec3d pt_m = SG_FEET_TO_METER*SGVec3d(pt);
SGVec3d _end[2], _vel[2];
double dist = ground_cache.get_cat(t, pt_m, _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], SG_METER_TO_FEET*_end[k] );
assign( vel[k], SG_METER_TO_FEET*_vel[k] );
}
return dist*SG_METER_TO_FEET;
}
bool
FGInterface::get_body_m(double t, simgear::BVHNode::Id id,
double bodyToWorld[16], double linearVel[3],
double angularVel[3])
{
SGMatrixd _bodyToWorld;
SGVec3d _linearVel, _angularVel;
if (!ground_cache.get_body(t, _bodyToWorld, _linearVel, _angularVel, id))
return false;
assign(linearVel, _linearVel);
assign(angularVel, _angularVel);
for (unsigned i = 0; i < 16; ++i)
bodyToWorld[i] = _bodyToWorld.data()[i];
return true;
}
bool
FGInterface::get_agl_m(double t, const double pt[3], double max_altoff,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
SGMaterial const*& material, simgear::BVHNode::Id& id)
{
SGVec3d pt_m = SGVec3d(pt) - max_altoff*ground_cache.get_down();
SGVec3d _contact, _normal, _linearVel, _angularVel;
const simgear::BVHMaterial* m = 0;
bool ret = ground_cache.get_agl(t, pt_m, _contact, _normal, _linearVel,
_angularVel, id, m);
// correct the linear velocity, since the line intersector delivers
// values for the start point and the get_agl function should
// traditionally deliver for the contact point
_linearVel += cross(_angularVel, _contact - pt_m);
assign(contact, _contact);
assign(normal, _normal);
assign(linearVel, _linearVel);
assign(angularVel, _angularVel);
material = dynamic_cast<const SGMaterial*>(m);
return ret;
}
bool
FGInterface::get_agl_ft(double t, const double pt[3], double max_altoff,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
SGMaterial const*& material, simgear::BVHNode::Id& id)
{
// Convert units and do the real work.
SGVec3d pt_m = SGVec3d(pt) - max_altoff*ground_cache.get_down();
pt_m *= SG_FEET_TO_METER;
SGVec3d _contact, _normal, _linearVel, _angularVel;
const simgear::BVHMaterial* m = 0;
bool ret = ground_cache.get_agl(t, pt_m, _contact, _normal, _linearVel,
_angularVel, id, m);
// correct the linear velocity, since the line intersector delivers
// values for the start point and the get_agl function should
// traditionally deliver for the contact point
_linearVel += cross(_angularVel, _contact - pt_m);
// Convert units back ...
assign( contact, SG_METER_TO_FEET*_contact );
assign( normal, _normal );
assign( linearVel, SG_METER_TO_FEET*_linearVel );
assign( angularVel, _angularVel );
material = dynamic_cast<const SGMaterial*>(m);
return ret;
}
bool
FGInterface::get_nearest_m(double t, const double pt[3], double maxDist,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
SGMaterial const*& material,
simgear::BVHNode::Id& id)
{
SGVec3d _contact, _linearVel, _angularVel;
const simgear::BVHMaterial* m = 0;
if (!ground_cache.get_nearest(t, SGVec3d(pt), maxDist, _contact, _linearVel,
_angularVel, id, m))
return false;
assign(contact, _contact);
assign(linearVel, _linearVel);
assign(angularVel, _angularVel);
material = dynamic_cast<const SGMaterial*>(m);
return true;
}
bool
FGInterface::get_nearest_ft(double t, const double pt[3], double maxDist,
double contact[3], double normal[3],
double linearVel[3], double angularVel[3],
SGMaterial const*& material,
simgear::BVHNode::Id& id)
{
SGVec3d _contact, _linearVel, _angularVel;
const simgear::BVHMaterial* m = 0;
if (!ground_cache.get_nearest(t, SG_FEET_TO_METER*SGVec3d(pt),
SG_FEET_TO_METER*maxDist, _contact, _linearVel,
_angularVel, id, m))
return false;
assign(contact, SG_METER_TO_FEET*_contact);
assign(linearVel, SG_METER_TO_FEET*_linearVel);
assign(angularVel, _angularVel);
material = dynamic_cast<const SGMaterial*>(m);
return true;
}
double
FGInterface::get_groundlevel_m(double lat, double lon, double alt)
{
return get_groundlevel_m(SGGeod::fromRadM(lon, lat, alt));
}
double
FGInterface::get_groundlevel_m(const SGGeod& geod)
{
// Compute the cartesian position of the given lat/lon/alt.
SGVec3d pos = SGVec3d::fromGeod(geod);
// FIXME: how to handle t - ref_time differences ???
SGVec3d cpos;
double ref_time = 0, radius;
// Prepare the ground cache for that position.
if (!is_valid_m(&ref_time, cpos.data(), &radius)) {
double startTime = ref_time;
double endTime = startTime + 1;
bool ok = prepare_ground_cache_m(startTime, endTime, pos.data(), 10);
/// This is most likely the case when the given altitude is
/// too low, try with a new altitude of 10000m, that should be
/// sufficient to find a ground level below everywhere on our planet
if (!ok) {
pos = SGVec3d::fromGeod(SGGeod::fromGeodM(geod, 10000));
/// If there is still no ground, return sea level radius
if (!prepare_ground_cache_m(startTime, endTime, pos.data(), 10))
return 0;
}
} else if (radius*radius <= distSqr(pos, cpos)) {
double startTime = ref_time;
double endTime = startTime + 1;
/// We reuse the old radius value, but only if it is at least 10 Meters ..
if (!(10 < radius)) // Well this strange compare is nan safe
radius = 10;
bool ok = prepare_ground_cache_m(startTime, endTime, pos.data(), radius);
/// This is most likely the case when the given altitude is
/// too low, try with a new altitude of 10000m, that should be
/// sufficient to find a ground level below everywhere on our planet
if (!ok) {
pos = SGVec3d::fromGeod(SGGeod::fromGeodM(geod, 10000));
/// If there is still no ground, return sea level radius
if (!prepare_ground_cache_m(startTime, endTime, pos.data(), radius))
return 0;
}
}
double contact[3], normal[3], vel[3], angvel[3];
const SGMaterial* material;
simgear::BVHNode::Id id;
// Ignore the return value here, since it just tells us if
// the returns stem from the groundcache or from the coarse
// computations below the groundcache. The contact point is still something
// valid, the normals and the other returns just contain some defaults.
get_agl_m(ref_time, pos.data(), 2.0, contact, normal, vel, angvel,
material, id);
return SGGeod::fromCart(SGVec3d(contact)).getElevationM();
}
bool
FGInterface::caught_wire_m(double t, const double pt[4][3])
{
SGVec3d pt_m[4];
for (int i=0; i<4; ++i)
pt_m[i] = SGVec3d(pt[i]);
return ground_cache.caught_wire(t, pt_m);
}
bool
FGInterface::caught_wire_ft(double t, const double pt[4][3])
{
// Convert units and do the real work.
SGVec3d pt_m[4];
for (int i=0; i<4; ++i)
pt_m[i] = SG_FEET_TO_METER*SGVec3d(pt[i]);
return ground_cache.caught_wire(t, pt_m);
}
bool
FGInterface::get_wire_ends_m(double t, double end[2][3], double vel[2][3])
{
SGVec3d _end[2], _vel[2];
bool ret = ground_cache.get_wire_ends(t, _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], _end[k] );
assign( vel[k], _vel[k] );
}
return ret;
}
bool
FGInterface::get_wire_ends_ft(double t, double end[2][3], double vel[2][3])
{
// Convert units and do the real work.
SGVec3d _end[2], _vel[2];
bool ret = ground_cache.get_wire_ends(t, _end, _vel);
for (int k=0; k<2; ++k) {
assign( end[k], SG_METER_TO_FEET*_end[k] );
assign( vel[k], SG_METER_TO_FEET*_vel[k] );
}
return ret;
}
void
FGInterface::release_wire(void)
{
ground_cache.release_wire();
}