1
0
Fork 0
flightgear/utils/GPSsmooth/UGear_main.cxx
2020-04-12 14:40:36 +01:00

1136 lines
38 KiB
C++

#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#ifdef HAVE_WINDOWS_H
# include <windows.h>
#else
# include <netinet/in.h> // htonl() ntohl()
#endif
#include <iostream>
#include <string>
#include <plib/sg.h>
#include <simgear/constants.h>
#include <simgear/io/lowlevel.hxx> // endian tests
#include <simgear/io/sg_file.hxx>
#include <simgear/io/raw_socket.hxx>
#include <simgear/serial/serial.hxx>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/timing/timestamp.hxx>
#include <Network/net_ctrls.hxx>
#include <Network/net_fdm.hxx>
#include "UGear.hxx"
#include "UGear_command.hxx"
#include "UGear_opengc.hxx"
#include "UGear_telnet.hxx"
using std::cout;
using std::endl;
using std::string;
// Network channels
static simgear::Socket fdm_sock, ctrls_sock, opengc_sock;
// ugear data
UGTrack track;
// Default ports
static int fdm_port = 5505;
static int ctrls_port = 5506;
static int opengc_port = 6000;
// Default path
static string infile = "";
static string flight_dir = "";
static string serialdev = "";
static string outfile = "";
// Master time counter
float sim_time = 0.0f;
double frame_us = 0.0f;
// sim control
SGTimeStamp last_time_stamp;
SGTimeStamp current_time_stamp;
// altitude offset
double alt_offset = 0.0;
// skip initial seconds
double skip = 0.0;
// for speed estimate
double last_lat = 0.0, last_lon = 0.0;
double kts_filter = 0.0;
bool inited = false;
bool run_real_time = true;
bool ignore_checksum = false;
bool sg_swap = false;
bool use_ground_track_hdg = false;
bool use_ground_speed = false;
bool est_controls = false;
float gps_status = -1.0;
// The function htond is defined this way due to the way some
// processors and OSes treat floating point values. Some will raise
// an exception whenever a "bad" floating point value is loaded into a
// floating point register. Solaris is notorious for this, but then
// so is LynxOS on the PowerPC. By translating the data in place,
// there is no need to load a FP register with the "corruped" floating
// point value. By doing the BIG_ENDIAN test, I can optimize the
// routine for big-endian processors so it can be as efficient as
// possible
static void htond (double &x)
{
if ( sgIsLittleEndian() ) {
int *Double_Overlay;
int Holding_Buffer;
Double_Overlay = (int *) &x;
Holding_Buffer = Double_Overlay [0];
Double_Overlay [0] = htonl (Double_Overlay [1]);
Double_Overlay [1] = htonl (Holding_Buffer);
} else {
return;
}
}
// Float version
static void htonf (float &x)
{
if ( sgIsLittleEndian() ) {
int *Float_Overlay;
int Holding_Buffer;
Float_Overlay = (int *) &x;
Holding_Buffer = Float_Overlay [0];
Float_Overlay [0] = htonl (Holding_Buffer);
} else {
return;
}
}
static void ugear2fg( gps *gpspacket, imu *imupacket, nav *navpacket,
servo *servopacket, health *healthpacket,
FGNetFDM *fdm, FGNetCtrls *ctrls )
{
unsigned int i;
// Version sanity checking
fdm->version = FG_NET_FDM_VERSION;
// Aero parameters
fdm->longitude = navpacket->lon * SG_DEGREES_TO_RADIANS;
fdm->latitude = navpacket->lat * SG_DEGREES_TO_RADIANS;
fdm->altitude = navpacket->alt + alt_offset;
fdm->agl = -9999.0;
fdm->psi = imupacket->psi; // heading
fdm->phi = imupacket->phi; // roll
fdm->theta = imupacket->the; // pitch;
fdm->phidot = 0.0;
fdm->thetadot = 0.0;
fdm->psidot = 0.0;
// estimate speed
// double az1, az2, dist;
// geo_inverse_wgs_84( fdm->altitude, last_lat, last_lon,
// fdm->latitude, fdm->longitude, &az1, &az2, &dist );
// last_lat = fdm->latitude;
// last_lon = fdm->longitude;
// double v_ms = dist / (frame_us / 1000000);
// double v_kts = v_ms * SG_METER_TO_NM * 3600;
// kts_filter = (0.9 * kts_filter) + (0.1 * v_kts);
// printf("dist = %.5f kts est = %.2f\n", dist, kts_filter);
double vn = navpacket->vn;
double ve = navpacket->ve;
double vd = navpacket->vd;
if ( use_ground_track_hdg ) {
fdm->psi = SGD_PI * 0.5 - atan2(vn, ve); // heading
}
double mps = 0.0;
if ( use_ground_speed ) {
mps = sqrt( vn*vn + ve*ve + vd*vd );
} else {
mps = imupacket->Pt;
}
// double mph = mps * 3600 / 1609.3440;
double kts = mps * SG_MPS_TO_KT;
fdm->vcas = kts;
// printf("speed = %.2f mph %.2f kts\n", mph, kts );
static double Ps = 0.0, Ps_last = 0.0, t_last = 0.0;
Ps_last = Ps;
Ps = 0.92 * Ps + 0.08 * imupacket->Ps;
double climb = (Ps - Ps_last) / (imupacket->time - t_last);
t_last = imupacket->time;
static double climbf = 0.0;
climbf = 0.994 * climbf + 0.006 * climb;
fdm->climb_rate = climbf; // fps
static double Ps_error = 0.0;
static double Ps_count = 0;
const double span = 10000.0;
Ps_count += 1.0; if (Ps_count > (span-1.0)) { Ps_count = (span-1.0); }
double error = navpacket->alt - Ps;
Ps_error = (Ps_count/span) * Ps_error + ((span-Ps_count)/span) * error;
fdm->altitude = Ps + Ps_error;
/* printf("%.3f, %.3f, %.3f, %.3f, %.8f, %.8f, %.3f, %.3f, %.3f, %.3f, %.3f\n",
imupacket->time, imupacket->the, -navpacket->vd, climbf,
navpacket->lat, navpacket->lon, gpspacket->alt, navpacket->alt,
imupacket->Ps, Ps, Ps + Ps_error); */
// cout << "climb rate = " << aero->hdota << endl;
fdm->v_north = 0.0;
fdm->v_east = 0.0;
fdm->v_down = 0.0;
fdm->v_body_u = 0.0;
fdm->v_body_v = 0.0;
fdm->v_body_w = 0.0;
fdm->stall_warning = 0.0;
fdm->A_X_pilot = 0.0;
fdm->A_Y_pilot = 0.0;
fdm->A_Z_pilot = 0.0 /* (should be -G) */;
// Engine parameters
fdm->num_engines = 1;
fdm->eng_state[0] = 2;
// cout << "state = " << fdm->eng_state[0] << endl;
double rpm = 5000.0 - ((double)servopacket->chn[2] / 65536.0)*3500.0;
if ( rpm < 0.0 ) { rpm = 0.0; }
if ( rpm > 5000.0 ) { rpm = 5000.0; }
fdm->rpm[0] = rpm;
fdm->fuel_flow[0] = 0.0;
fdm->egt[0] = 0.0;
// cout << "egt = " << aero->EGT << endl;
fdm->oil_temp[0] = 0.0;
fdm->oil_px[0] = 0.0;
// Consumables
fdm->num_tanks = 2;
fdm->fuel_quantity[0] = 0.0;
fdm->fuel_quantity[1] = 0.0;
// Gear and flaps
fdm->num_wheels = 3;
fdm->wow[0] = 0;
fdm->wow[1] = 0;
fdm->wow[2] = 0;
// the following really aren't used in this context
fdm->cur_time = 0;
fdm->warp = 0;
fdm->visibility = 0;
// cout << "Flap deflection = " << aero->dflap << endl;
fdm->left_flap = 0.0;
fdm->right_flap = 0.0;
if ( est_controls ) {
static float est_elev = 0.0;
static float est_aileron = 0.0;
static float est_rudder = 0.0;
est_elev = 0.99 * est_elev + 0.01 * (imupacket->q * 4);
est_aileron = 0.95 * est_aileron + 0.05 * (imupacket->p * 5);
est_rudder = 0.95 * est_rudder + 0.05 * (imupacket->r * 2);
ctrls->elevator = fdm->elevator = -est_elev;
ctrls->aileron = fdm->left_aileron = est_aileron;
fdm->right_aileron = -est_aileron;
ctrls->rudder = fdm->rudder = est_rudder;
} else {
ctrls->elevator = fdm->elevator = 1.0 - ((double)servopacket->chn[1] / 32768.0);
ctrls->aileron = fdm->left_aileron = 1.0 - ((double)servopacket->chn[0] / 32768.0);
fdm->right_aileron = ((double)servopacket->chn[0] / 32768.0) - 1.0;
ctrls->rudder = fdm->rudder = 1.0 - ((double)servopacket->chn[3] / 32768.0);
ctrls->elevator *= 3.0;
ctrls->aileron *= 3.0;
}
fdm->elevator_trim_tab = 0.0;
fdm->left_flap = 0.0;
fdm->right_flap = 0.0;
fdm->nose_wheel = 0.0;
fdm->speedbrake = 0.0;
fdm->spoilers = 0.0;
// Convert the net buffer to network format
fdm->version = htonl(fdm->version);
htond(fdm->longitude);
htond(fdm->latitude);
htond(fdm->altitude);
htonf(fdm->agl);
htonf(fdm->phi);
htonf(fdm->theta);
htonf(fdm->psi);
htonf(fdm->alpha);
htonf(fdm->beta);
htonf(fdm->phidot);
htonf(fdm->thetadot);
htonf(fdm->psidot);
htonf(fdm->vcas);
htonf(fdm->climb_rate);
htonf(fdm->v_north);
htonf(fdm->v_east);
htonf(fdm->v_down);
htonf(fdm->v_body_u);
htonf(fdm->v_body_v);
htonf(fdm->v_body_w);
htonf(fdm->A_X_pilot);
htonf(fdm->A_Y_pilot);
htonf(fdm->A_Z_pilot);
htonf(fdm->stall_warning);
htonf(fdm->slip_deg);
for ( i = 0; i < fdm->num_engines; ++i ) {
fdm->eng_state[i] = htonl(fdm->eng_state[i]);
htonf(fdm->rpm[i]);
htonf(fdm->fuel_flow[i]);
htonf(fdm->egt[i]);
htonf(fdm->cht[i]);
htonf(fdm->mp_osi[i]);
htonf(fdm->tit[i]);
htonf(fdm->oil_temp[i]);
htonf(fdm->oil_px[i]);
}
fdm->num_engines = htonl(fdm->num_engines);
for ( i = 0; i < fdm->num_tanks; ++i ) {
htonf(fdm->fuel_quantity[i]);
}
fdm->num_tanks = htonl(fdm->num_tanks);
for ( i = 0; i < fdm->num_wheels; ++i ) {
fdm->wow[i] = htonl(fdm->wow[i]);
htonf(fdm->gear_pos[i]);
htonf(fdm->gear_steer[i]);
htonf(fdm->gear_compression[i]);
}
fdm->num_wheels = htonl(fdm->num_wheels);
fdm->cur_time = htonl( fdm->cur_time );
fdm->warp = htonl( fdm->warp );
htonf(fdm->visibility);
htonf(fdm->elevator);
htonf(fdm->elevator_trim_tab);
htonf(fdm->left_flap);
htonf(fdm->right_flap);
htonf(fdm->left_aileron);
htonf(fdm->right_aileron);
htonf(fdm->rudder);
htonf(fdm->nose_wheel);
htonf(fdm->speedbrake);
htonf(fdm->spoilers);
#if 0
ctrls->version = FG_NET_CTRLS_VERSION;
ctrls->elevator_trim = 0.0;
ctrls->flaps = 0.0;
htonl(ctrls->version);
htond(ctrls->aileron);
htond(ctrls->rudder);
htond(ctrls->elevator);
htond(ctrls->elevator_trim);
htond(ctrls->flaps);
#endif
}
static void ugear2opengc( gps *gpspacket, imu *imupacket, nav *navpacket,
servo *servopacket, health *healthpacket,
ogcFGData *ogc )
{
// Version sanity checking
ogc->version_id = OGC_VERSION;
// Aero parameters
ogc->longitude = navpacket->lon;
ogc->latitude = navpacket->lat;
ogc->heading = imupacket->psi * SG_RADIANS_TO_DEGREES; // heading
ogc->bank = imupacket->phi * SG_RADIANS_TO_DEGREES; // roll
ogc->pitch = imupacket->the * SG_RADIANS_TO_DEGREES; // pitch;
ogc->phi_dot = 0.0;
ogc->theta_dot = 0.0;
ogc->psi_dot = 0.0;
ogc->alpha = 0.0;
ogc->beta = 0.0;
ogc->alpha_dot = 0.0;
ogc->beta_dot = 0.0;
ogc->left_aileron = 1.0 - ((double)servopacket->chn[0] / 32768.0);
ogc->right_aileron = ((double)servopacket->chn[0] / 32768.0) - 1.0;
ogc->elevator = 1.0 - ((double)servopacket->chn[1] / 32768.0);
ogc->elevator_trim = 0.0;
ogc->rudder = 1.0 - ((double)servopacket->chn[3] / 32768.0);
ogc->flaps = 0.0;
ogc->flaps_cmd = 0.0;
ogc->wind = 0.0;
ogc->wind_dir = 0.0;
// estimate speed
// double az1, az2, dist;
// geo_inverse_wgs_84( fdm->altitude, last_lat, last_lon,
// fdm->latitude, fdm->longitude, &az1, &az2, &dist );
// last_lat = fdm->latitude;
// last_lon = fdm->longitude;
// double v_ms = dist / (frame_us / 1000000);
// double v_kts = v_ms * SG_METER_TO_NM * 3600;
// kts_filter = (0.9 * kts_filter) + (0.1 * v_kts);
// printf("dist = %.5f kts est = %.2f\n", dist, kts_filter);
double vn = navpacket->vn;
double ve = navpacket->ve;
double vd = navpacket->vd;
if ( use_ground_track_hdg ) {
ogc->heading = (SGD_PI * 0.5 - atan2(vn, ve)) * SG_RADIANS_TO_DEGREES;
}
if ( ogc->heading < 0 ) { ogc->heading += 360.0; }
double mps = 0.0;
if ( use_ground_speed ) {
mps = sqrt( vn*vn + ve*ve + vd*vd );
} else {
mps = imupacket->Pt;
}
// double mph = mps * 3600 / 1609.3440;
double kts = mps * SG_MPS_TO_KT;
ogc->v_kcas = kts;
// printf("speed = %.2f mph %.2f kts\n", mph, kts );
static double Ps = 0.0, Ps_last = 0.0, t_last = 0.0;
Ps_last = Ps;
Ps = 0.92 * Ps + 0.08 * imupacket->Ps;
double climb = (Ps - Ps_last) / (imupacket->time - t_last);
t_last = imupacket->time;
static double climbf = 0.0;
climbf = 0.994 * climbf + 0.006 * climb;
ogc->vvi = climbf; // fps
// uncomment one of the following schemes for setting elevation:
// use the navigation (inertially augmented gps estimate)
// ogc->altitude = ogc->elevation
// = (navpacket->alt + alt_offset * SG_METER_TO_FEET);
// use estimate error between pressure sensor and gps altitude over time
// use pressure sensor + error average for altitude estimate.
static double Ps_error = 0.0;
static double Ps_count = 0;
const double span = 10000.0;
Ps_count += 1.0; if (Ps_count > (span-1.0)) { Ps_count = (span-1.0); }
double error = navpacket->alt - Ps;
Ps_error = (Ps_count/span) * Ps_error + ((span-Ps_count)/span) * error;
ogc->elevation = (Ps + Ps_error) * SG_METER_TO_FEET;
/* printf("%.3f, %.3f, %.3f, %.3f, %.8f, %.8f, %.3f, %.3f, %.3f, %.3f, %.3f\n",
imupacket->time, imupacket->the, -navpacket->vd, climbf,
navpacket->lat, navpacket->lon, gpspacket->alt, navpacket->alt,
imupacket->Ps, Ps, Ps + Ps_error); */
if ( est_controls ) {
static float est_elev = 0.0;
static float est_aileron = 0.0;
static float est_rudder = 0.0;
est_elev = 0.99 * est_elev + 0.01 * (imupacket->q * 4);
est_aileron = 0.95 * est_aileron + 0.05 * (imupacket->p * 5);
est_rudder = 0.95 * est_rudder + 0.05 * (imupacket->r * 2);
ogc->elevator = -est_elev;
ogc->left_aileron = est_aileron;
ogc->right_aileron = -est_aileron;
ogc->rudder = est_rudder;
} else {
ogc->elevator = 1.0 - ((double)servopacket->chn[1] / 32768.0);
ogc->left_aileron = 1.0 - ((double)servopacket->chn[0] / 32768.0);
ogc->right_aileron = ((double)servopacket->chn[0] / 32768.0) - 1.0;
ogc->rudder = 1.0 - ((double)servopacket->chn[3] / 32768.0);
}
ogc->elevator *= 4.0;
ogc->left_aileron *= 4.0;
ogc->right_aileron *= 4.0;
ogc->rudder *= 4.0;
// additional "abused" data fields
ogc->egt[0] = ogc->bank - healthpacket->target_roll_deg; // flight director target roll
ogc->egt[1] = -ogc->pitch + healthpacket->target_pitch_deg; // flight director target pitch
ogc->egt[2] = healthpacket->target_heading_deg; // target heading bug
ogc->egt[3] = healthpacket->target_climb_fps; // target VVI bug
ogc->epr[0] = healthpacket->target_altitude_ft; // target altitude bug
ogc->epr[1] = 30.0; // target speed bug
ogc->epr[2] = gps_status; // gps status box
}
static void send_data_udp( gps *gpspacket, imu *imupacket, nav *navpacket,
servo *servopacket, health *healthpacket )
{
int ogcsize = sizeof( ogcFGData );
int fdmsize = sizeof( FGNetFDM );
// int ctrlsize = sizeof( FGNetCtrls );
// cout << "Running main loop" << endl;
ogcFGData fgogc;
FGNetFDM fgfdm;
FGNetCtrls fgctrls;
ugear2fg( gpspacket, imupacket, navpacket, servopacket, healthpacket,
&fgfdm, &fgctrls );
ugear2opengc( gpspacket, imupacket, navpacket, servopacket, healthpacket,
&fgogc );
opengc_sock.send(&fgogc, ogcsize, 0);
fdm_sock.send(&fgfdm, fdmsize, 0);
// len = ctrls_sock.send(&fgctrls, ctrlsize, 0);
}
void usage( const string &argv0 ) {
cout << "Usage: " << argv0 << endl;
cout << "\t[ --help ]" << endl;
cout << "\t[ --infile <infile_name>" << endl;
cout << "\t[ --flight <flight_dir>" << endl;
cout << "\t[ --serial <dev_name>" << endl;
cout << "\t[ --outfile <outfile_name> (capture the data to a file)" << endl;
cout << "\t[ --hertz <hertz> ]" << endl;
cout << "\t[ --host <hostname> ]" << endl;
cout << "\t[ --broadcast ]" << endl;
cout << "\t[ --opengc-port <opengc output port #> ]" << endl;
cout << "\t[ --fdm-port <fdm output port #> ]" << endl;
cout << "\t[ --ctrls-port <ctrls output port #> ]" << endl;
cout << "\t[ --groundtrack-heading ]" << endl;
cout << "\t[ --ground-speed ]" << endl;
cout << "\t[ --estimate-control-deflections ]" << endl;
cout << "\t[ --altitude-offset <meters> ]" << endl;
cout << "\t[ --skip-seconds <seconds> ]" << endl;
cout << "\t[ --no-real-time ]" << endl;
cout << "\t[ --ignore-checksum ]" << endl;
cout << "\t[ --sg-swap ]" << endl;
}
int main( int argc, char **argv ) {
double hertz = 60.0;
string out_host = "localhost";
bool do_broadcast = false;
// process command line arguments
for ( int i = 1; i < argc; ++i ) {
if ( strcmp( argv[i], "--help" ) == 0 ) {
usage( argv[0] );
exit( 0 );
} else if ( strcmp( argv[i], "--hertz" ) == 0 ) {
++i;
if ( i < argc ) {
hertz = atof( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--infile" ) == 0 ) {
++i;
if ( i < argc ) {
infile = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--flight" ) == 0 ) {
++i;
if ( i < argc ) {
flight_dir = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--outfile" ) == 0 ) {
++i;
if ( i < argc ) {
outfile = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--serial" ) == 0 ) {
++i;
if ( i < argc ) {
serialdev = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--host" ) == 0 ) {
++i;
if ( i < argc ) {
out_host = argv[i];
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--broadcast" ) == 0 ) {
do_broadcast = true;
} else if ( strcmp( argv[i], "--opengc-port" ) == 0 ) {
++i;
if ( i < argc ) {
opengc_port = atoi( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--fdm-port" ) == 0 ) {
++i;
if ( i < argc ) {
fdm_port = atoi( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--ctrls-port" ) == 0 ) {
++i;
if ( i < argc ) {
ctrls_port = atoi( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp (argv[i], "--groundtrack-heading" ) == 0 ) {
use_ground_track_hdg = true;
} else if ( strcmp (argv[i], "--ground-speed" ) == 0 ) {
use_ground_speed = true;
} else if (strcmp (argv[i], "--estimate-control-deflections" ) == 0) {
est_controls = true;
} else if ( strcmp( argv[i], "--altitude-offset" ) == 0 ) {
++i;
if ( i < argc ) {
alt_offset = atof( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--skip-seconds" ) == 0 ) {
++i;
if ( i < argc ) {
skip = atof( argv[i] );
} else {
usage( argv[0] );
exit( -1 );
}
} else if ( strcmp( argv[i], "--no-real-time" ) == 0 ) {
run_real_time = false;
} else if ( strcmp( argv[i], "--ignore-checksum" ) == 0 ) {
ignore_checksum = true;
} else if ( strcmp( argv[i], "--sg-swap" ) == 0 ) {
sg_swap = true;
} else {
usage( argv[0] );
exit( -1 );
}
}
// Setup up outgoing network connections
simgear::Socket::initSockets(); // We must call this before any other net stuff
if ( ! opengc_sock.open( false ) ) { // open a UDP socket
cout << "error opening opengc output socket" << endl;
return -1;
}
if ( ! fdm_sock.open( false ) ) { // open a UDP socket
cout << "error opening fdm output socket" << endl;
return -1;
}
if ( ! ctrls_sock.open( false ) ) { // open a UDP socket
cout << "error opening ctrls output socket" << endl;
return -1;
}
cout << "open net channels" << endl;
opengc_sock.setBlocking( false );
fdm_sock.setBlocking( false );
ctrls_sock.setBlocking( false );
cout << "blocking false" << endl;
if ( do_broadcast ) {
opengc_sock.setBroadcast( true );
fdm_sock.setBroadcast( true );
ctrls_sock.setBroadcast( true );
}
if ( opengc_sock.connect( out_host.c_str(), opengc_port ) == -1 ) {
perror("connect");
cout << "error connecting to outgoing opengc port: " << out_host
<< ":" << opengc_port << endl;
return -1;
}
cout << "connected outgoing opengc socket" << endl;
if ( fdm_sock.connect( out_host.c_str(), fdm_port ) == -1 ) {
perror("connect");
cout << "error connecting to outgoing fdm port: " << out_host
<< ":" << fdm_port << endl;
return -1;
}
cout << "connected outgoing fdm socket" << endl;
if ( ctrls_sock.connect( out_host.c_str(), ctrls_port ) == -1 ) {
perror("connect");
cout << "error connecting to outgoing ctrls port: " << out_host
<< ":" << ctrls_port << endl;
return -1;
}
cout << "connected outgoing ctrls socket" << endl;
if ( sg_swap ) {
track.set_stargate_swap_mode();
}
UGTelnet telnet( 5402 );
telnet.open();
if ( infile.length() || flight_dir.length() ) {
if ( infile.length() ) {
// Load data from a stream log data file
track.load_stream( infile, ignore_checksum );
} else if ( flight_dir.length() ) {
// Load data from a flight directory
track.load_flight( flight_dir );
}
cout << "Loaded " << track.gps_size() << " gps records." << endl;
cout << "Loaded " << track.imu_size() << " imu records." << endl;
cout << "Loaded " << track.nav_size() << " nav records." << endl;
cout << "Loaded " << track.servo_size() << " servo records." << endl;
cout << "Loaded " << track.health_size() << " health records." << endl;
int size = track.imu_size();
double current_time = track.get_imupt(0).time;
cout << "Track begin time is " << current_time << endl;
double end_time = track.get_imupt(size-1).time;
cout << "Track end time is " << end_time << endl;
cout << "Duration = " << end_time - current_time << endl;
if ( track.gps_size() > 0 ) {
double tmp = track.get_gpspt(track.gps_size()-1).ITOW;
int days = (int)(tmp / (24 * 60 * 60));
tmp -= days * 24 * 60 * 60;
int hours = (int)(tmp / (60 * 60));
tmp -= hours * 60 * 60;
int min = (int)(tmp / 60);
tmp -= min * 60;
double sec = tmp;
printf("[GPS ]:ITOW= %.3f[sec] %dd %02d:%02d:%06.3f\n",
tmp, days, hours, min, sec);
}
// advance skip seconds forward
current_time += skip;
frame_us = 1000000.0 / hertz;
if ( frame_us < 0.0 ) {
frame_us = 0.0;
}
SGTimeStamp start_time;
start_time.stamp();
int gps_count = 0;
int imu_count = 0;
int nav_count = 0;
int servo_count = 0;
int health_count = 0;
gps gps0, gps1;
gps0 = gps1 = track.get_gpspt( 0 );
imu imu0, imu1;
imu0 = imu1 = track.get_imupt( 0 );
nav nav0, nav1;
nav0 = nav1 = track.get_navpt( 0 );
servo servo0, servo1;
servo0 = servo1 = track.get_servopt( 0 );
health health0, health1;
health0 = health1 = track.get_healthpt( 0 );
double last_lat = -999.9, last_lon = -999.9;
printf("<gpx>\n");
printf(" <trk>\n");
printf(" <trkseg>\n");
while ( current_time < end_time ) {
// cout << "current_time = " << current_time << " end_time = "
// << end_time << endl;
// Advance gps pointer
while ( current_time > gps1.time
&& gps_count < track.gps_size() - 1 )
{
gps0 = gps1;
++gps_count;
// cout << "count = " << count << endl;
gps1 = track.get_gpspt( gps_count );
}
// cout << "p0 = " << p0.get_time() << " p1 = " << p1.get_time()
// << endl;
// Advance imu pointer
while ( current_time > imu1.time
&& imu_count < track.imu_size() - 1 )
{
imu0 = imu1;
++imu_count;
// cout << "count = " << count << endl;
imu1 = track.get_imupt( imu_count );
}
// cout << "pos0 = " << pos0.get_seconds()
// << " pos1 = " << pos1.get_seconds() << endl;
// Advance nav pointer
while ( current_time > nav1.time
&& nav_count < track.nav_size() - 1 )
{
nav0 = nav1;
++nav_count;
// cout << "nav count = " << nav_count << endl;
nav1 = track.get_navpt( nav_count );
}
// cout << "pos0 = " << pos0.get_seconds()
// << " pos1 = " << pos1.get_seconds() << endl;
// Advance servo pointer
while ( current_time > servo1.time
&& servo_count < track.servo_size() - 1 )
{
servo0 = servo1;
++servo_count;
// cout << "count = " << count << endl;
servo1 = track.get_servopt( servo_count );
}
// cout << "pos0 = " << pos0.get_seconds()
// << " pos1 = " << pos1.get_seconds() << endl;
// Advance health pointer
while ( current_time > health1.time
&& health_count < track.health_size() - 1 )
{
health0 = health1;
++health_count;
// cout << "count = " << count << endl;
health1 = track.get_healthpt( health_count );
}
// cout << "pos0 = " << pos0.get_seconds()
// << " pos1 = " << pos1.get_seconds() << endl;
double gps_percent;
if ( fabs(gps1.time - gps0.time) < 0.00001 ) {
gps_percent = 0.0;
} else {
gps_percent =
(current_time - gps0.time) /
(gps1.time - gps0.time);
}
// cout << "Percent = " << percent << endl;
double imu_percent;
if ( fabs(imu1.time - imu0.time) < 0.00001 ) {
imu_percent = 0.0;
} else {
imu_percent =
(current_time - imu0.time) /
(imu1.time - imu0.time);
}
// cout << "Percent = " << percent << endl;
double nav_percent;
if ( fabs(nav1.time - nav0.time) < 0.00001 ) {
nav_percent = 0.0;
} else {
nav_percent =
(current_time - nav0.time) /
(nav1.time - nav0.time);
}
// cout << "Percent = " << percent << endl;
double servo_percent;
if ( fabs(servo1.time - servo0.time) < 0.00001 ) {
servo_percent = 0.0;
} else {
servo_percent =
(current_time - servo0.time) /
(servo1.time - servo0.time);
}
// cout << "Percent = " << percent << endl;
double health_percent;
if ( fabs(health1.time - health0.time) < 0.00001 ) {
health_percent = 0.0;
} else {
health_percent =
(current_time - health0.time) /
(health1.time - health0.time);
}
// cout << "Percent = " << percent << endl;
gps gpspacket = UGEARInterpGPS( gps0, gps1, gps_percent );
imu imupacket = UGEARInterpIMU( imu0, imu1, imu_percent );
nav navpacket = UGEARInterpNAV( nav0, nav1, nav_percent );
servo servopacket = UGEARInterpSERVO( servo0, servo1,
servo_percent );
health healthpacket = UGEARInterpHEALTH( health0, health1,
health_percent );
// cout << current_time << " " << p0.lat_deg << ", " << p0.lon_deg
// << endl;
// cout << current_time << " " << p1.lat_deg << ", " << p1.lon_deg
// << endl;
// cout << (double)current_time << " " << pos.lat_deg << ", "
// << pos.lon_deg << " " << att.yaw_deg << endl;
if ( gpspacket.lat > -500 ) {
// printf( "%.3f %.4f %.4f %.1f %.2f %.2f %.2f\n",
// current_time,
// navpacket.lat, navpacket.lon, navpacket.alt,
// imupacket.psi, imupacket.the, imupacket.phi );
double dlat = last_lat - navpacket.lat;
double dlon = last_lon - navpacket.lon;
double dist = sqrt( dlat*dlat + dlon*dlon );
if ( dist > 0.01 ) {
printf(" <trkpt lat=\"%.8f\" lon=\"%.8f\"></trkpt>\n",
navpacket.lat, navpacket.lon );
// printf(" </wpt>\n");
last_lat = navpacket.lat;
last_lon = navpacket.lon;
}
}
if ( (fabs(gpspacket.lat) < 0.0001 &&
fabs(gpspacket.lon) < 0.0001 &&
fabs(gpspacket.alt) < 0.0001) )
{
printf("WARNING: LOST GPS!!!\n");
gps_status = -1.0;
} else {
gps_status = 1.0;
}
send_data_udp( &gpspacket, &imupacket, &navpacket, &servopacket,
&healthpacket );
if ( run_real_time ) {
// Update the elapsed time.
static bool first_time = true;
if ( first_time ) {
last_time_stamp.stamp();
first_time = false;
}
current_time_stamp.stamp();
/* Convert to ms */
double elapsed_us = (current_time_stamp - last_time_stamp).toUSecs();
if ( elapsed_us < (frame_us - 2000) ) {
double requested_us = (frame_us - elapsed_us) - 2000 ;
ulMilliSecondSleep ( (int)(requested_us / 1000.0) ) ;
}
current_time_stamp.stamp();
while ( (current_time_stamp - last_time_stamp).toUSecs() < frame_us ) {
current_time_stamp.stamp();
}
}
current_time += (frame_us / 1000000.0);
last_time_stamp = current_time_stamp;
}
printf(" <trkpt lat=\"%.8f\" lon=\"%.8f\"></trkpt>\n",
nav1.lat, nav1.lon );
printf(" </trkseg>\n");
printf(" </trk>\n");
nav0 = track.get_navpt( 0 );
nav1 = track.get_navpt( track.nav_size() - 1 );
printf(" <wpt lat=\"%.8f\" lon=\"%.8f\"></wpt>\n",
nav0.lat, nav0.lon );
printf(" <wpt lat=\"%.8f\" lon=\"%.8f\"></wpt>\n",
nav1.lat, nav1.lon );
printf("<gpx>\n");
cout << "Processed " << imu_count << " entries in "
<< current_time_stamp - start_time << " seconds."
<< endl;
} else if ( serialdev.length() ) {
// process incoming data from the serial port
int count = 0;
double current_time = 0.0;
double last_time = 0.0;
gps gpspacket; memset( &gpspacket, 0, sizeof gpspacket );
imu imupacket; memset( &imupacket, 0, sizeof imupacket );
nav navpacket; memset( &navpacket, 0, sizeof navpacket );
servo servopacket; memset( &servopacket, 0, sizeof servopacket );
health healthpacket; memset( &healthpacket, 0, sizeof healthpacket );
double gps_time = 0.0;
double imu_time = 0.0;
double nav_time = 0.0;
double servo_time = 0.0;
double health_time = 0.0;
double command_time = 0.0;
double command_heartbeat = 0.0;
// open the serial port device
SGSerialPort uavcom( serialdev, 115200 );
if ( !uavcom.is_enabled() ) {
cout << "Cannot open: " << serialdev << endl;
return false;
}
// open up the data log file if requested
if ( !outfile.length() ) {
cout << "no --outfile <name> specified, cannot capture data!"
<< endl;
return false;
}
SGFile log( outfile );
if ( !log.open( SG_IO_OUT ) ) {
cout << "Cannot open: " << outfile << endl;
return false;
}
// add some test commands
//command_mgr.add("ap,alt,1000");
//command_mgr.add("home,158.0,32.5");
//command_mgr.add("go,home");
//command_mgr.add("go,route");
while ( uavcom.is_enabled() ) {
// cout << "looking for next message ..." << endl;
int id = track.next_message( &uavcom, &log, &gpspacket,
&imupacket, &navpacket, &servopacket,
&healthpacket, ignore_checksum );
// cout << "message id = " << id << endl;
count++;
telnet.process();
if ( id == GPS_PACKET ) {
if ( gpspacket.time > gps_time ) {
gps_time = gpspacket.time;
current_time = gps_time;
} else {
cout << "oops gps back in time: " << gpspacket.time << " " << gps_time << endl;
}
} else if ( id == IMU_PACKET ) {
if ( imupacket.time > imu_time ) {
imu_time = imupacket.time;
current_time = imu_time;
} else {
cout << "oops imu back in time: " << imupacket.time << " " << imu_time << endl;
}
} else if ( id == NAV_PACKET ) {
if ( navpacket.time > nav_time ) {
nav_time = navpacket.time;
current_time = nav_time;
} else {
cout << "oops nav back in time: " << navpacket.time << " " << nav_time << endl;
}
} else if ( id == SERVO_PACKET ) {
if ( servopacket.time > servo_time ) {
servo_time = servopacket.time;
current_time = servo_time;
} else {
cout << "oops servo back in time: " << servopacket.time << " " << servo_time << endl;
}
} else if ( id == HEALTH_PACKET ) {
if ( healthpacket.time > health_time ) {
health_time = healthpacket.time;
current_time = health_time;
printf("Received a health packet, sequence: %d\n",
(int)healthpacket.command_sequence);
command_mgr.update_cmd_sequence(healthpacket.command_sequence);
} else {
cout << "oops health back in time: " << healthpacket.time << " " << health_time << endl;
}
}
if ( (current_time > gps_time + 2) ||
(fabs(gpspacket.lat) < 0.0001 &&
fabs(gpspacket.lon) < 0.0001 &&
fabs(gpspacket.alt) < 0.0001) )
{
printf("WARNING: LOST GPS!!!\n");
gps_status = -1.0;
} else {
gps_status = 1.0;
}
// Generate a ground station heart beat every 4 seconds
if ( current_time >= command_heartbeat + 4 ) {
command_mgr.add("hb");
command_heartbeat = current_time;
}
// Command update @ 1hz
if ( current_time >= command_time + 1 ) {
command_mgr.update(&uavcom);
command_time = current_time;
}
// Relay data on to FlightGear and LFSTech Glass
if ( current_time >= last_time + (1/hertz) ) {
// if ( gpspacket.lat > -500 ) {
int londeg = (int)navpacket.lon;
// double lonmin = fabs(navpacket.lon - londeg);
int latdeg = (int)navpacket.lat;
// double latmin = fabs(navpacket.lat - latdeg);
londeg = abs(londeg);
latdeg = abs(latdeg);
/*printf( "%.2f %c%02d:%.4f %c%03d:%.4f %.1f %.2f %.2f %.2f\n",
current_time,
latdir, latdeg, latmin, londir, londeg, lonmin,
navpacket.alt,
imupacket.phi*SGD_RADIANS_TO_DEGREES,
imupacket.the*SGD_RADIANS_TO_DEGREES,
imupacket.psi*SGD_RADIANS_TO_DEGREES ); */
// }
last_time = current_time;
send_data_udp( &gpspacket, &imupacket, &navpacket,
&servopacket, &healthpacket );
}
}
}
return 0;
}