1
0
Fork 0
flightgear/test_suite/FGTestApi/TestPilot.cxx
Edward d'Auvergne c5aa3ca0f1 SGSubsystem classes: Switch to the new SGSubsystemMgr::add() functions.
Most subsystems are now created via the subsystem manager using the global
subsystem registrations.

The FGGlobals add_subsystem() and add_new_subsystem() methods have been removed
as the subsystem manager addition and creation function interface now exceeds
the functionality of these helper functions.
2022-11-17 15:57:39 +00:00

282 lines
8.7 KiB
C++

/*
* Copyright (C) 2019 James Turner
*
* This file is part of the program FlightGear.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "TestPilot.hxx"
#include <algorithm>
#include <simgear/math/SGGeodesy.hxx>
#include <simgear/props/props.hxx>
#include <simgear/math/SGGeod.hxx>
#include <Aircraft/AircraftPerformance.hxx> // for formulae
#include <Main/globals.hxx>
#include "TestDataLogger.hxx"
namespace FGTestApi {
TestPilot::TestPilot(SGPropertyNode_ptr props) :
_propRoot(props)
{
if (!_propRoot) {
// use default properties
_propRoot = globals->get_props();
}
_latProp = _propRoot->getNode("position/latitude-deg", true);
_lonProp = _propRoot->getNode("position/longitude-deg", true);
_altitudeProp = _propRoot->getNode("position/altitude-ft", true);
_headingProp = _propRoot->getNode("orientation/heading-deg", true);
_speedKnotsProp = _propRoot->getNode("velocities/airspeed-kt", true);
_speedMachProp = _propRoot->getNode("velocities/mach", true);
_groundspeedKnotsProp = _propRoot->getNode("velocities/groundspeed-kt", true);
_verticalFPMProp = _propRoot->getNode("velocities/vertical-fpm", true);
globals->get_subsystem_mgr()->add("flight", this);
}
TestPilot::~TestPilot()
{
}
void TestPilot::resetAtPosition(const SGGeod& pos)
{
_turnActive = false;
setPosition(pos);
}
void TestPilot::init()
{
_vspeedFPM = 1200;
}
void TestPilot::update(double dt)
{
updateValues(dt);
}
void TestPilot::setSpeedKts(double knots)
{
_speedKnots = knots;
}
void TestPilot::setVerticalFPM(double fpm)
{
_vspeedFPM = fpm;
}
void TestPilot::setCourseTrue(double deg)
{
_trueCourseDeg = deg;
}
void TestPilot::turnToCourse(double deg)
{
_turnActive = true;
_targetCourseDeg = deg;
}
void TestPilot::flyHeading(double hdg)
{
_lateralMode = LateralMode::Heading;
_turnActive = true;
_targetCourseDeg = hdg;
}
void TestPilot::flyGPSCourse(GPS *gps)
{
_gps = gps;
_gpsNode = globals->get_props()->getNode("instrumentation/gps");
_gpsLegCourse = _gpsNode->getNode("wp/leg-true-course-deg", true);
_courseErrorNm = _gpsNode->getNode("wp/wp[1]/course-error-nm", true);
_lateralMode = LateralMode::GPSCourse;
_turnActive = false;
}
void TestPilot::flyGPSCourseOffset(GPS *gps, double offsetNm)
{
_gps = gps;
_gpsNode = globals->get_props()->getNode("instrumentation/gps");
_gpsLegCourse = _gpsNode->getNode("wp/leg-true-course-deg", true);
_courseErrorNm = _gpsNode->getNode("wp/wp[1]/course-error-nm", true);
_lateralMode = LateralMode::GPSOffset;
_courseOffsetNm = offsetNm;
_turnActive = false;
}
void TestPilot::flyDirectTo(const SGGeod& target)
{
_lateralMode = LateralMode::Direct;
_targetPos = target;
}
void TestPilot::updateValues(double dt)
{
auto dl = DataLogger::instance();
if (_gps && (_lateralMode == LateralMode::GPSCourse)) {
_targetCourseDeg = _gpsLegCourse->getDoubleValue();
// set how aggressively we try to correct our course
double courseCorrectionFactor = 64.0;
double crossTrack = _courseErrorNm->getDoubleValue();
dl->recordSamplePoint("TP-error-nm", crossTrack);
SG_CLAMP_RANGE(crossTrack, -2.0, 2.0); // clamp to 2nm deviation
double correction = courseCorrectionFactor * crossTrack;
const double maxCorrectionAngle = 45;
dl->recordSamplePoint("TP-base-correction-deg", correction);
// within 1nm of the desired course, start to bias
// based on heading error. This is to reduce overshooting
// while still keeping the responsiveness high
if (fabs(crossTrack) < 1.0) {
// compensate for heading
double headingError = _targetCourseDeg - _trueCourseDeg;
SG_NORMALIZE_RANGE(headingError, -180.0, 180.0);
if (fabs(headingError) > 90.0) {
// we're pointing the wrong way, don't compensate
// otherwise we get into knots trying to make the
// turn back the right way
} else {
const double p = 1.0 - fabs(crossTrack);
const double headingErrorFactor = 0.6;
correction += p * headingError * headingErrorFactor;
}
}
dl->recordSamplePoint("TP-correction-deg", correction);
SG_CLAMP_RANGE(correction, -maxCorrectionAngle, maxCorrectionAngle);
_targetCourseDeg += correction;
dl->recordSamplePoint("TP-target-deg", _targetCourseDeg);
SG_NORMALIZE_RANGE(_targetCourseDeg, 0.0, 360.0);
if (!_turnActive &&(fabs(_trueCourseDeg - _targetCourseDeg) > 0.5)) {
_turnActive = true;
}
}
if (_gps && (_lateralMode == LateralMode::GPSOffset)) {
_targetCourseDeg = _gpsLegCourse->getDoubleValue();
double crossTrack = _courseErrorNm->getDoubleValue();
double offsetError = crossTrack - _courseOffsetNm;
const double offsetCorrectionFactor = 25.0;
const double correction = offsetError * offsetCorrectionFactor;
_targetCourseDeg += correction;
SG_NORMALIZE_RANGE(_targetCourseDeg, 0.0, 360.0);
if (!_turnActive &&(fabs(_trueCourseDeg - _targetCourseDeg) > 0.5)) {
_turnActive = true;
}
}
if (_lateralMode == LateralMode::Direct) {
_targetCourseDeg = SGGeodesy::courseDeg(globals->get_aircraft_position(), _targetPos);
SG_NORMALIZE_RANGE(_targetCourseDeg, 0.0, 360.0);
if (!_turnActive && (fabs(_trueCourseDeg - _targetCourseDeg) > 0.5)) {
_turnActive = true;
}
}
if (_turnActive) {
if (fabs(_targetCourseDeg - _trueCourseDeg) < 0.1) {
_trueCourseDeg = _targetCourseDeg;
_turnActive = false;
} else {
// standard 2-minute turn, 180-deg min, thus 3-degrees per second
double turnDeg = 5.0 * dt;
double errorDeg = _targetCourseDeg - _trueCourseDeg;
SG_NORMALIZE_RANGE(errorDeg, -180.0, 180.0);
// clamp turn to error value
turnDeg = std::min(turnDeg, fabs(errorDeg));
// and now ensure we follow the correct sign
turnDeg = copysign(turnDeg, errorDeg);
// simple integral
_trueCourseDeg += turnDeg;
SG_NORMALIZE_RANGE(_trueCourseDeg, 0.0, 360.0);
}
}
SGGeod currentPos = globals->get_aircraft_position();
const double M = flightgear::AircraftPerformance::machForCAS(currentPos.getElevationFt(), _speedKnots);
_speedMachProp->setDoubleValue(M);
const double gs = flightgear::AircraftPerformance::groundSpeedForMach(currentPos.getElevationFt(), M);
_groundspeedKnotsProp->setDoubleValue(gs);
double d = gs * SG_KT_TO_MPS * dt;
SGGeod newPos = SGGeodesy::direct(currentPos, _trueCourseDeg, d);
if (_altActive) {
if (fabs(_targetAltitudeFt - currentPos.getElevationFt()) < 1) {
_altActive = false;
newPos.setElevationFt(_targetAltitudeFt);
} else {
double errorFt = _targetAltitudeFt - currentPos.getElevationFt();
double vspeed = std::min(fabs(errorFt),_vspeedFPM * dt / 60.0);
double dv = copysign(vspeed, errorFt);
newPos.setElevationFt(currentPos.getElevationFt() + dv);
}
}
setPosition(newPos);
}
void TestPilot::setPosition(const SGGeod& pos)
{
_latProp->setDoubleValue(pos.getLatitudeDeg());
_lonProp->setDoubleValue(pos.getLongitudeDeg());
_altitudeProp->setDoubleValue(pos.getElevationFt());
_headingProp->setDoubleValue(_trueCourseDeg);
_speedKnotsProp->setDoubleValue(_speedKnots);
_verticalFPMProp->setDoubleValue(_vspeedFPM);
}
void TestPilot::setTargetAltitudeFtMSL(double altFt)
{
_targetAltitudeFt = altFt;
_altActive = true;
}
bool TestPilot::isOnHeading(double heading) const
{
const double hdgDelta = (_trueCourseDeg - heading);
return fabs(hdgDelta) < 0.5;
}
double TestPilot::trueCourseDeg() const
{
return _trueCourseDeg;
}
} // of namespace