535 lines
15 KiB
C++
535 lines
15 KiB
C++
// Module: 10520c.c
|
|
// Author: Phil Schubert
|
|
// Date started: 12/03/99
|
|
// Purpose: Models a Continental IO-520-M Engine
|
|
// Called by: FGSimExec
|
|
//
|
|
// Copyright (C) 1999 Philip L. Schubert (philip@zedley.com)
|
|
//
|
|
// This program is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU General Public License as
|
|
// published by the Free Software Foundation; either version 2 of the
|
|
// License, or (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful, but
|
|
// WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
|
|
// 02111-1307, USA.
|
|
//
|
|
// Further information about the GNU General Public License can also
|
|
// be found on the world wide web at http://www.gnu.org.
|
|
//
|
|
// FUNCTIONAL DESCRIPTION
|
|
// ------------------------------------------------------------------------
|
|
// Models a Continental IO-520-M engine. This engine is used in Cessna
|
|
// 210, 310, Beechcraft Bonaza and Baron C55. The equations used below
|
|
// were determined by a first and second order curve fits using Excel.
|
|
// The data is from the Cessna Aircraft Corporations Engine and Flight
|
|
// Computer for C310. Part Number D3500-13
|
|
//
|
|
// ARGUMENTS
|
|
// ------------------------------------------------------------------------
|
|
//
|
|
//
|
|
// HISTORY
|
|
// ------------------------------------------------------------------------
|
|
// 12/03/99 PLS Created
|
|
// 07/03/99 PLS Added Calculation of Density, and Prop_Torque
|
|
// 07/03/99 PLS Restructered Variables to allow easier implementation
|
|
// of Classes
|
|
// 15/03/99 PLS Added Oil Pressure
|
|
// 19/8/2000 PLS Updated E-mail address - This version compiles
|
|
// 19/8/2000 PLS Set Max Prop blade angle to prevent prop exeeding 90
|
|
// ------------------------------------------------------------------------
|
|
// INCLUDES
|
|
// ------------------------------------------------------------------------
|
|
|
|
#include <simgear/compiler.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include STL_IOSTREAM
|
|
|
|
#if !defined(SG_HAVE_NATIVE_SGI_COMPILERS)
|
|
SG_USING_STD(cout);
|
|
SG_USING_STD(endl);
|
|
#endif
|
|
|
|
// ------------------------------------------------------------------------
|
|
// CODE
|
|
// ------------------------------------------------------------------------
|
|
|
|
// prototype definitions
|
|
// These should be in a header file 10520c.h
|
|
|
|
float Density (float x);
|
|
void ShowRho (float x);
|
|
|
|
float IAS_to_FPS (float x);
|
|
void ShowFPS(float x);
|
|
|
|
float Get_Throttle (float x);
|
|
void Show_Throttle (float x);
|
|
|
|
float Manifold_Pressure (float x, float z);
|
|
void Show_Manifold_Pressure (float x);
|
|
|
|
float CHT (float Fuel_Flow, float Mixture, float IAS);
|
|
void Show_CHT (float x);
|
|
|
|
float Oil_Temp (float x, float y);
|
|
void Show_Oil_Temp (float x);
|
|
|
|
float Oil_Press (float Oil_Temp, float Engine_RPM);
|
|
void Show_Oil_Press (float x);
|
|
|
|
int main()
|
|
|
|
{
|
|
// Declare local variables
|
|
int num = 0; // Not used. Counting variables
|
|
int num2 = 100; // Not used.
|
|
float ManXRPM = 0;
|
|
float Vo = 0;
|
|
float V1 = 0;
|
|
|
|
|
|
// Set up the new variables
|
|
float Blade_Station = 30;
|
|
float Rho = 0.002378;
|
|
float FGProp_Area = 1.405/3;
|
|
float PI = 3.1428571;
|
|
|
|
// Input Variables
|
|
float IAS = 0;
|
|
cout << "Enter IAS ";
|
|
// cin >> IAS;
|
|
IAS = 85;
|
|
cout << endl;
|
|
|
|
|
|
// 0 = Closed, 100 = Fully Open
|
|
float FGEng1_Throttle_Lever_Pos = 75;
|
|
// 0 = Full Course 100 = Full Fine
|
|
float FGEng1_Propeller_Lever_Pos = 75;
|
|
// 0 = Idle Cut Off 100 = Full Rich
|
|
float FGEng1_Mixture_Lever_Pos = 100;
|
|
|
|
// Environmental Variables
|
|
|
|
// Temp Variation from ISA (Deg F)
|
|
float FG_ISA_VAR = 0;
|
|
// Pressure Altitude 1000's of Feet
|
|
float FG_Pressure_Ht = 0;
|
|
|
|
// Parameters that alter the operation of the engine.
|
|
// Yes = 1. Is there Fuel Available. Calculated elsewhere
|
|
int FGEng1_Fuel_Available = 1;
|
|
// Off = 0. Reduces power by 3 % for same throttle setting
|
|
int FGEng1_Alternate_Air_Pos =0;
|
|
// 1 = On. Reduces power by 5 % for same power lever settings
|
|
int FGEng1_Magneto_Left = 1;
|
|
// 1 = On. Ditto, Both of the above though do not alter fuel flow
|
|
int FGEng1_Magneto_Right = 1;
|
|
|
|
// There needs to be a section in here to trap silly values, like
|
|
// 0, otherwise they will crash the calculations
|
|
|
|
// Engine Specific Variables used by this program that have limits.
|
|
// Will be set in a parameter file to be read in to create
|
|
// and instance for each engine.
|
|
float FGEng_Max_Manifold_Pressure = 29.50;
|
|
float FGEng_Max_RPM = 2700;
|
|
float FGEng_Min_RPM = 1000;
|
|
float FGEng_Max_Fuel_Flow = 130;
|
|
float FGEng_Mag_Derate_Percent = 5;
|
|
float FGEng_MaxHP = 285;
|
|
float FGEng_Gear_Ratio = 1;
|
|
|
|
// Initialise Engine Variables used by this instance
|
|
float FGEng1_Percentage_Power = 0;
|
|
float FGEng1_Manifold_Pressure = 29.00; // Inches
|
|
float FGEng1_RPM = 500;
|
|
float FGEng1_Fuel_Flow = 0; // lbs/hour
|
|
float FGEng1_Torque = 0;
|
|
float FGEng1_CHT = 370;
|
|
float FGEng1_Mixture = 14;
|
|
float FGEng1_Oil_Pressure = 0; // PSI
|
|
float FGEng1_Oil_Temp = 85; // Deg C
|
|
float FGEng1_HP = 0;
|
|
float FGEng1_RPS = 0;
|
|
float Torque_Imbalance = 0;
|
|
float FGEng1_Desired_RPM = 0;
|
|
|
|
// Initialise Propellor Variables used by this instance
|
|
float FGProp1_Angular_V = 0;
|
|
float FGProp1_Coef_Drag = 0.6;
|
|
float FGProp1_Torque = 0;
|
|
float FGProp1_Thrust = 0;
|
|
float FGProp1_RPS = 0;
|
|
float FGProp1_Coef_Lift = 0.1;
|
|
float Alpha1 = 13.5;
|
|
float FGProp1_Blade_Angle = 13.5;
|
|
float FGProp_Fine_Pitch_Stop = 13.5;
|
|
float FGProp_Course_Pitch_Stop = 55;
|
|
|
|
// cout << "Enter Blade Angle ";
|
|
// cin >> FGProp1_Blade_Angle;
|
|
// cout << endl;
|
|
|
|
cout << " Number of Iterations ";
|
|
// cin >> num2;
|
|
num2 = 100;
|
|
cout << endl;
|
|
|
|
cout << " Throttle % ";
|
|
// cin >> FGEng1_Throttle_Lever_Pos;
|
|
FGEng1_Throttle_Lever_Pos = 50;
|
|
cout << endl;
|
|
|
|
cout << " Prop % ";
|
|
// cin >> FGEng1_Propeller_Lever_Pos;
|
|
FGEng1_Propeller_Lever_Pos = 100;
|
|
cout << endl;
|
|
|
|
//==================================================================
|
|
// Engine & Environmental Inputs from elsewhere
|
|
|
|
// Calculate Air Density (Rho) - In FG this is calculated in
|
|
// FG_Atomoshere.cxx
|
|
|
|
Rho = Density(FG_Pressure_Ht); // In FG FG_Pressure_Ht is "h"
|
|
ShowRho(Rho);
|
|
|
|
|
|
// Calculate Manifold Pressure (Engine 1) as set by throttle opening
|
|
|
|
FGEng1_Manifold_Pressure = Manifold_Pressure(FGEng1_Throttle_Lever_Pos,
|
|
FGEng1_Manifold_Pressure );
|
|
Show_Manifold_Pressure(FGEng1_Manifold_Pressure);
|
|
|
|
// Calculate Desired RPM as set by Prop Lever Position.
|
|
// Actual engine RPM may be different
|
|
// The governed max RPM at 100% Prop Lever Position = FGEng_MaxRPM
|
|
// The governed minimum RPM at 0% Prop Lever Position = FGEng_Min_RPM
|
|
// The actual minimum RPM of the engine can be < FGEng_Min_RPM if there is insufficient
|
|
// engine torque to counter act the propeller torque at FGProp_Fine_Pitch_Stop
|
|
|
|
FGEng1_RPM = (FGEng1_Propeller_Lever_Pos * (FGEng_Max_RPM - FGEng_Min_RPM) /100)
|
|
+ FGEng_Min_RPM ;
|
|
|
|
// * ((FGEng_Max_RPM + FGEng_Min_RPM) / 100);
|
|
|
|
if (FGEng1_RPM >= 2700) {
|
|
FGEng1_RPM = 2700;
|
|
}
|
|
FGEng1_Desired_RPM = FGEng1_RPM;
|
|
|
|
cout << "Desired RPM = " << FGEng1_Desired_RPM << endl;
|
|
|
|
//==================================================================
|
|
// Engine Power & Torque Calculations
|
|
|
|
// Loop until stable - required for testing only
|
|
for (num = 1; num < num2; num++) {
|
|
cout << endl << "====================" << endl;
|
|
cout << "MP Inches = " << FGEng1_Manifold_Pressure << "\t";
|
|
cout << FGEng1_RPM << " RPM" << "\t";
|
|
|
|
// For a givem Manifold Pressure and RPM calculate the % Power
|
|
// Multiply Manifold Pressure by RPM
|
|
ManXRPM = FGEng1_Manifold_Pressure * FGEng1_RPM;
|
|
cout << ManXRPM << endl;
|
|
|
|
// Calculate % Power
|
|
FGEng1_Percentage_Power = (+ 7E-09 * ManXRPM * ManXRPM)
|
|
+ ( + 7E-04 * ManXRPM) - 0.1218;
|
|
cout << "percent power = " << FGEng1_Percentage_Power << "%" << "\t";
|
|
|
|
// Adjust for Temperature - Temperature above Standard decrease
|
|
// power % by 7/120 per degree F increase, and incease power for
|
|
// temps below at the same ratio
|
|
FGEng1_Percentage_Power = FGEng1_Percentage_Power - (FG_ISA_VAR * 7 /120);
|
|
cout << " adjusted T = " << FGEng1_Percentage_Power << "%" << "\t";
|
|
|
|
// Adjust for Altitude. In this version a linear variation is
|
|
// used. Decrease 1% for each 1000' increase in Altitde
|
|
FGEng1_Percentage_Power = FGEng1_Percentage_Power
|
|
+ (FG_Pressure_Ht * 12/10000);
|
|
cout << " adjusted A = " << FGEng1_Percentage_Power << "%" << "\t";
|
|
|
|
// Now Calculate Fuel Flow based on % Power Best Power Mixture
|
|
FGEng1_Fuel_Flow = FGEng1_Percentage_Power
|
|
* FGEng_Max_Fuel_Flow / 100;
|
|
// cout << FGEng1_Fuel_Flow << " lbs/hr"<< endl;
|
|
|
|
// Now Derate engine for the effects of Bad/Switched off magnetos
|
|
if (FGEng1_Magneto_Left == 0 && FGEng1_Magneto_Right == 0) {
|
|
// cout << "Both OFF\n";
|
|
FGEng1_Percentage_Power = 0;
|
|
} else if (FGEng1_Magneto_Left && FGEng1_Magneto_Right) {
|
|
// cout << "Both On ";
|
|
} else if (FGEng1_Magneto_Left == 0 || FGEng1_Magneto_Right== 0) {
|
|
// cout << "1 Magneto Failed ";
|
|
|
|
FGEng1_Percentage_Power = FGEng1_Percentage_Power *
|
|
((100 - FGEng_Mag_Derate_Percent)/100);
|
|
// cout << FGEng1_Percentage_Power << "%" << "\t";
|
|
}
|
|
|
|
// Calculate Engine Horsepower
|
|
|
|
FGEng1_HP = FGEng1_Percentage_Power * FGEng_MaxHP/100;
|
|
|
|
// Calculate Engine Torque
|
|
|
|
FGEng1_Torque = FGEng1_HP * 5252 / FGEng1_RPM;
|
|
cout << FGEng1_Torque << "Ft/lbs" << "\t";
|
|
|
|
// Calculate Cylinder Head Temperature
|
|
FGEng1_CHT = CHT (FGEng1_Fuel_Flow, FGEng1_Mixture, IAS);
|
|
// Show_CHT (FGEng1_CHT);
|
|
|
|
// Calculate Oil Pressure
|
|
FGEng1_Oil_Pressure = Oil_Press (FGEng1_Oil_Temp, FGEng1_RPM);
|
|
// Show_Oil_Press(FGEng1_Oil_Pressure);
|
|
|
|
|
|
//==============================================================
|
|
|
|
// Now do the Propellor Calculations
|
|
|
|
// Revs per second
|
|
FGProp1_RPS = FGEng1_RPM * FGEng_Gear_Ratio/60;
|
|
// cout << FGProp1_RPS << " RPS" << endl;
|
|
|
|
//Radial Flow Vector (V2) Ft/sec at Ref Blade Station (usually 30")
|
|
FGProp1_Angular_V = FGProp1_RPS * 2 * PI * (Blade_Station / 12);
|
|
cout << "Angular Velocity " << FGProp1_Angular_V << endl;
|
|
|
|
// Axial Flow Vector (Vo) Ft/sec
|
|
// Some further work required here to allow for inflow at low speeds
|
|
// Vo = (IAS + 20) * 1.688888;
|
|
Vo = IAS_to_FPS(IAS + 20);
|
|
// ShowFPS ( Vo );
|
|
|
|
// cout << Vo << "Axial Velocity" << endl;
|
|
|
|
// Relative Velocity (V1)
|
|
V1 = sqrt((FGProp1_Angular_V * FGProp1_Angular_V) +
|
|
(Vo * Vo));
|
|
cout << "Relative Velocity " << V1 << endl;
|
|
|
|
if ( FGProp1_Blade_Angle >= FGProp_Course_Pitch_Stop ) {
|
|
FGProp1_Blade_Angle = FGProp_Course_Pitch_Stop;
|
|
}
|
|
|
|
cout << FGProp1_Blade_Angle << " Prop Blade Angle" << endl;
|
|
|
|
// Blade Angle of Attack (Alpha1)
|
|
|
|
Alpha1 = FGProp1_Blade_Angle -(atan(Vo / FGProp1_Angular_V) * (180/PI));
|
|
// cout << Alpha1 << " Alpha1" << endl;
|
|
|
|
cout << " Alpha1 = " << Alpha1
|
|
<< " Blade angle = " << FGProp1_Blade_Angle
|
|
<< " Vo = " << Vo
|
|
<< " FGProp1_Angular_V = " << FGProp1_Angular_V << endl;
|
|
|
|
// Calculate Coefficient of Drag at Alpha1
|
|
FGProp1_Coef_Drag = (0.0005 * (Alpha1 * Alpha1)) + (0.0003 * Alpha1)
|
|
+ 0.0094;
|
|
// cout << FGProp1_Coef_Drag << " Coef Drag" << endl;
|
|
|
|
// Calculate Coefficient of Lift at Alpha1
|
|
FGProp1_Coef_Lift = -(0.0026 * (Alpha1 * Alpha1)) + (0.1027 * Alpha1)
|
|
+ 0.2295;
|
|
// cout << FGProp1_Coef_Lift << " Coef Lift " << endl;
|
|
|
|
// Covert Alplha1 to Radians
|
|
// Alpha1 = Alpha1 * PI / 180;
|
|
|
|
// Calculate Prop Torque
|
|
FGProp1_Torque = (0.5 * Rho * (V1 * V1) * FGProp_Area
|
|
* ((FGProp1_Coef_Lift * sin(Alpha1 * PI / 180))
|
|
+ (FGProp1_Coef_Drag * cos(Alpha1 * PI / 180))))
|
|
* (Blade_Station/12);
|
|
cout << "Prop Torque = " << FGProp1_Torque << endl;
|
|
|
|
// Calculate Prop Thrust
|
|
FGProp1_Thrust = 0.5 * Rho * (V1 * V1) * FGProp_Area
|
|
* ((FGProp1_Coef_Lift * cos(Alpha1 * PI / 180))
|
|
- (FGProp1_Coef_Drag * sin(Alpha1 * PI / 180)));
|
|
cout << " Prop Thrust = " << FGProp1_Thrust << endl;
|
|
|
|
// End of Propeller Calculations
|
|
//==============================================================
|
|
|
|
|
|
|
|
Torque_Imbalance = FGProp1_Torque - FGEng1_Torque;
|
|
// cout << Torque_Imbalance << endl;
|
|
|
|
if (Torque_Imbalance > 20) {
|
|
FGEng1_RPM -= 14.5;
|
|
// FGProp1_RPM -= 25;
|
|
FGProp1_Blade_Angle -= 0.75;
|
|
}
|
|
|
|
if (FGProp1_Blade_Angle < FGProp_Fine_Pitch_Stop) {
|
|
FGProp1_Blade_Angle = FGProp_Fine_Pitch_Stop;
|
|
}
|
|
if (Torque_Imbalance < -20) {
|
|
FGEng1_RPM += 14.5;
|
|
// FGProp1_RPM += 25;
|
|
FGProp1_Blade_Angle += 0.75;
|
|
}
|
|
|
|
if (FGEng1_RPM >= 2700) {
|
|
FGEng1_RPM = 2700;
|
|
}
|
|
|
|
|
|
// cout << FGEng1_RPM << " Blade_Angle " << FGProp1_Blade_Angle << endl << endl;
|
|
|
|
}
|
|
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
|
|
|
|
// Functions
|
|
|
|
// Calculate Air Density - Rho
|
|
float Density ( float x )
|
|
{
|
|
float y ;
|
|
y = ((9E-08 * x * x) - (7E-08 * x) + 0.0024);
|
|
return(y);
|
|
}
|
|
|
|
// Show Air Density Calculations
|
|
void ShowRho (float x)
|
|
{
|
|
cout << "Rho = ";
|
|
cout << x << endl;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Calculate Speed in FPS given Knots CAS
|
|
float IAS_to_FPS (float x)
|
|
{
|
|
float y;
|
|
y = x * 1.68888888;
|
|
return (y);
|
|
}
|
|
|
|
// Show Feet per Second
|
|
void ShowFPS (float x)
|
|
{
|
|
cout << "Feet/sec = ";
|
|
cout << x << endl;
|
|
}
|
|
|
|
|
|
|
|
// Calculate Manifold Pressure based on Throttle lever Position
|
|
|
|
float Manifold_Pressure ( float x, float z)
|
|
{
|
|
float y;
|
|
// if ( x < = 0 )
|
|
// {
|
|
// x = 0.00001;
|
|
// }
|
|
y = x * z / 100;
|
|
return (y);
|
|
}
|
|
|
|
// Show Manifold Pressure
|
|
void Show_Manifold_Pressure (float x)
|
|
{
|
|
cout << "Manifold Pressure = ";
|
|
cout << x << endl;
|
|
}
|
|
|
|
// Calculate Oil Temperature
|
|
|
|
float Oil_Temp (float Fuel_Flow, float Mixture, float IAS)
|
|
{
|
|
float Oil_Temp = 85;
|
|
|
|
return (Oil_Temp);
|
|
}
|
|
|
|
// Show Oil Temperature
|
|
|
|
void Show_Oil_Temp (float x)
|
|
{
|
|
cout << "Oil Temperature (F) = ";
|
|
cout << x << endl;
|
|
}
|
|
|
|
|
|
// Calculate Oil Pressure
|
|
|
|
float Oil_Press (float Oil_Temp, float Engine_RPM)
|
|
{
|
|
float Oil_Pressure = 0; //PSI
|
|
float Oil_Press_Relief_Valve = 60; //PSI
|
|
float Oil_Press_RPM_Max = 1800;
|
|
float Design_Oil_Temp = 85; //Celsius
|
|
float Oil_Viscosity_Index = 0.25; // PSI/Deg C
|
|
float Temp_Deviation = 0; // Deg C
|
|
|
|
Oil_Pressure = (Oil_Press_Relief_Valve / Oil_Press_RPM_Max) * Engine_RPM;
|
|
|
|
// Pressure relief valve opens at Oil_Press_Relief_Valve PSI setting
|
|
if (Oil_Pressure >= Oil_Press_Relief_Valve)
|
|
{
|
|
Oil_Pressure = Oil_Press_Relief_Valve;
|
|
}
|
|
|
|
// Now adjust pressure according to Temp which affects the viscosity
|
|
|
|
Oil_Pressure += (Design_Oil_Temp - Oil_Temp) * Oil_Viscosity_Index;
|
|
|
|
return (Oil_Pressure);
|
|
}
|
|
|
|
// Show Oil Pressure
|
|
void Show_Oil_Press (float x)
|
|
{
|
|
cout << "Oil Pressure (PSI) = ";
|
|
cout << x << endl;
|
|
}
|
|
|
|
|
|
|
|
// Calculate Cylinder Head Temperature
|
|
|
|
float CHT (float Fuel_Flow, float Mixture, float IAS)
|
|
{
|
|
float CHT = 350;
|
|
|
|
return (CHT);
|
|
}
|
|
|
|
// Show Cyl Head Temperature
|
|
|
|
void Show_CHT (float x)
|
|
{
|
|
cout << "CHT (F) = ";
|
|
cout << x << endl;
|
|
}
|