1
0
Fork 0
flightgear/src/AIModel/AIBallistic.cxx
frohlich 7e73a87882 Improove FGTileMgr::scenery_available for small ranges.
Use SGGeod in FGTileMgr, FGScenery apis.

Modified Files:
	src/AIModel/AIBallistic.cxx src/Main/main.cxx
	src/Scenery/scenery.cxx src/Scenery/scenery.hxx
	src/Scenery/tilemgr.cxx src/Scenery/tilemgr.hxx
	src/Scripting/NasalSys.cxx
2009-03-18 08:00:07 +01:00

1074 lines
34 KiB
C++

// FGAIBallistic - FGAIBase-derived class creates a ballistic object
//
// Written by David Culp, started November 2003.
// - davidculp2@comcast.net
//
// With major additions by Mathias Froehlich & Vivian Meazza 2004-2008
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <simgear/math/sg_random.h>
#include <simgear/math/sg_geodesy.hxx>
#include <simgear/scene/model/modellib.hxx>
#include <Scenery/scenery.hxx>
#include "AIModelData.hxx"
#include "AIBallistic.hxx"
#include <Main/util.hxx>
using namespace simgear;
const double FGAIBallistic::slugs_to_kgs = 14.5939029372;
const double FGAIBallistic::slugs_to_lbs = 32.1740485564;
FGAIBallistic::FGAIBallistic(object_type ot) :
FGAIBase(ot),
_elevation(0),
_aero_stabilised(false),
_drag_area(0.007),
_life_timer(0.0),
_gravity(32.1740485564),
_buoyancy(0),
_random(false),
_ht_agl_ft(0),
_load_resistance(0),
_solid(false),
_report_collision(false),
_report_impact(false),
_wind(true),
_impact_report_node(fgGetNode("/ai/models/model-impact", true)),
_force_stabilised(false),
_external_force(false),
_slave_to_ac(false),
_slave_load_to_ac(false),
_formate_to_ac(false),
_contents_lb(0),
_mass(0),
_height(0),
_old_height(0)
{
no_roll = false;
}
FGAIBallistic::~FGAIBallistic() {
}
void FGAIBallistic::readFromScenario(SGPropertyNode* scFileNode) {
if (!scFileNode){
return;
}
FGAIBase::readFromScenario(scFileNode);
//setPath(scFileNode->getStringValue("model", "Models/Geometry/rocket.ac"));
setAzimuth(scFileNode->getDoubleValue("azimuth", 0.0));
setElevation(scFileNode->getDoubleValue("elevation", 0));
setDragArea(scFileNode->getDoubleValue("eda", 0.007));
setLife(scFileNode->getDoubleValue("life", 900.0));
setBuoyancy(scFileNode->getDoubleValue("buoyancy", 0));
setWind_from_east(scFileNode->getDoubleValue("wind_from_east", 0));
setWind_from_north(scFileNode->getDoubleValue("wind_from_north", 0));
setWind(scFileNode->getBoolValue("wind", false));
setRoll(scFileNode->getDoubleValue("roll", 0.0));
setCd(scFileNode->getDoubleValue("cd", 0.029));
//setMass(scFileNode->getDoubleValue("mass", 0.007));
setWeight(scFileNode->getDoubleValue("weight", 0.25));
setStabilisation(scFileNode->getBoolValue("aero-stabilized", false));
setNoRoll(scFileNode->getBoolValue("no-roll", false));
setRandom(scFileNode->getBoolValue("random", false));
setImpact(scFileNode->getBoolValue("impact", false));
setImpactReportNode(scFileNode->getStringValue("impact-reports"));
setName(scFileNode->getStringValue("name", "Rocket"));
setFuseRange(scFileNode->getDoubleValue("fuse-range", 0.0));
setSMPath(scFileNode->getStringValue("submodel-path", ""));
setSubID(scFileNode->getIntValue("SubID", 0));
setExternalForce(scFileNode->getBoolValue("external-force", false));
setForcePath(scFileNode->getStringValue("force-path", ""));
setForceStabilisation(scFileNode->getBoolValue("force-stabilized", false));
setXoffset(scFileNode->getDoubleValue("x-offset", 0.0));
setYoffset(scFileNode->getDoubleValue("y-offset", 0.0));
setZoffset(scFileNode->getDoubleValue("z-offset", 0.0));
setPitchoffset(scFileNode->getDoubleValue("pitch-offset", 0.0));
setRolloffset(scFileNode->getDoubleValue("roll-offset", 0.0));
setYawoffset(scFileNode->getDoubleValue("yaw-offset", 0.0));
setGroundOffset(scFileNode->getDoubleValue("ground-offset", 0.0));
setLoadOffset(scFileNode->getDoubleValue("load-offset", 0.0));
setSlaved(scFileNode->getBoolValue("slaved", false));
setSlavedLoad(scFileNode->getBoolValue("slaved-load", false));
setContentsNode(scFileNode->getStringValue("contents"));
setRandom(scFileNode->getBoolValue("random", false));
}
osg::Node* FGAIBallistic::load3DModel(const string &path, SGPropertyNode *prop_root)
{
model = SGModelLib::loadModel(path, prop_root, new FGAIModelData(this, prop_root));
return model.get();
}
bool FGAIBallistic::init(bool search_in_AI_path) {
FGAIBase::init(search_in_AI_path);
_impact_reported = false;
_collision_reported = false;
invisible = false;
_elapsed_time += (sg_random() * 100);
props->setStringValue("material/name", "");
props->setStringValue("name", _name.c_str());
props->setStringValue("submodels/path", _submodel.c_str());
// start with high value so that animations don't trigger yet
_ht_agl_ft = 1e10;
hdg = _azimuth;
pitch = _elevation;
roll = _rotation;
Transform();
return true;
}
void FGAIBallistic::bind() {
// FGAIBase::bind();
props->tie("sim/time/elapsed-sec",
SGRawValueMethods<FGAIBallistic,double>(*this,
&FGAIBallistic::_getTime));
props->tie("mass-slug",
SGRawValueMethods<FGAIBallistic,double>(*this,
&FGAIBallistic::getMass));
props->tie("material/load-resistance",
SGRawValuePointer<double>(&_load_resistance));
props->tie("material/solid",
SGRawValuePointer<bool>(&_solid));
props->tie("altitude-agl-ft",
SGRawValuePointer<double>(&_ht_agl_ft));
props->tie("controls/slave-to-ac",
SGRawValueMethods<FGAIBallistic,bool>
(*this, &FGAIBallistic::getSlaved, &FGAIBallistic::setSlaved));
props->tie("controls/invisible",
SGRawValuePointer<bool>(&invisible));
if(_external_force){
props->tie("controls/force_stabilized",
SGRawValuePointer<bool>(&_force_stabilised));
props->tie("position/global-x",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosX, 0));
props->tie("position/global-y",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosY, 0));
props->tie("position/global-z",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getCartPosZ, 0));
props->tie("velocities/vertical-speed-fps",
SGRawValuePointer<double>(&vs));
props->tie("velocities/true-airspeed-kt",
SGRawValuePointer<double>(&speed));
props->tie("velocities/horizontal-speed-fps",
SGRawValuePointer<double>(&hs));
props->tie("position/altitude-ft",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getAltitude, &FGAIBase::_setAltitude));
props->tie("position/latitude-deg",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLatitude, &FGAIBase::_setLatitude));
props->tie("position/longitude-deg",
SGRawValueMethods<FGAIBase,double>(*this, &FGAIBase::_getLongitude, &FGAIBase::_setLongitude));
props->tie("orientation/hdg-deg",
SGRawValuePointer<double>(&hdg));
props->tie("orientation/pitch-deg",
SGRawValuePointer<double>(&pitch));
props->tie("orientation/roll-deg",
SGRawValuePointer<double>(&roll));
props->tie("controls/slave-load-to-ac",
SGRawValueMethods<FGAIBallistic,bool>
(*this, &FGAIBallistic::getSlavedLoad, &FGAIBallistic::setSlavedLoad));
props->tie("position/load-offset",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getLoadOffset, &FGAIBallistic::setLoadOffset));
props->tie("load/distance-to-hitch-ft",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getDistanceLoadToHitch));
props->tie("load/elevation-to-hitch-deg",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getElevLoadToHitch));
props->tie("load/bearing-to-hitch-deg",
SGRawValueMethods<FGAIBallistic,double>
(*this, &FGAIBallistic::getBearingLoadToHitch));
}
}
void FGAIBallistic::unbind() {
// FGAIBase::unbind();
props->untie("sim/time/elapsed-sec");
props->untie("mass-slug");
props->untie("material/load-resistance");
props->untie("material/solid");
props->untie("altitude-agl-ft");
props->untie("controls/slave-to-ac");
props->untie("controls/invisible");
if(_external_force){
props->untie("position/global-y");
props->untie("position/global-x");
props->untie("position/global-z");
props->untie("velocities/vertical-speed-fps");
props->untie("velocities/true-airspeed-kt");
props->untie("velocities/horizontal-speed-fps");
props->untie("position/altitude-ft");
props->untie("position/latitude-deg");
props->untie("position/longitude-deg");
props->untie("position/ht-agl-ft");
props->untie("orientation/hdg-deg");
props->untie("orientation/pitch-deg");
props->untie("orientation/roll-deg");
props->untie("controls/force_stabilized");
props->untie("position/load-offset");
props->untie("load/distance-to-hitch-ft");
props->untie("load/elevation-to-hitch-deg");
props->untie("load/bearing-to-hitch-deg");
}
}
void FGAIBallistic::update(double dt) {
FGAIBase::update(dt);
_setUserPos();
if (_slave_to_ac){
slaveToAC(dt);
Transform();
setHitchVelocity(dt);
} else if (_formate_to_ac){
formateToAC(dt);
Transform();
setHitchVelocity(dt);
} else if (!invisible){
Run(dt);
Transform();
}
}
void FGAIBallistic::setAzimuth(double az) {
hdg = _azimuth = az;
}
void FGAIBallistic::setElevation(double el) {
pitch = _elevation = el;
}
void FGAIBallistic::setRoll(double rl) {
roll = _rotation = rl;
}
void FGAIBallistic::setStabilisation(bool val) {
_aero_stabilised = val;
}
void FGAIBallistic::setForceStabilisation(bool val) {
_force_stabilised = val;
}
void FGAIBallistic::setNoRoll(bool nr) {
no_roll = nr;
}
void FGAIBallistic::setDragArea(double a) {
_drag_area = a;
}
void FGAIBallistic::setLife(double seconds) {
life = seconds;
}
void FGAIBallistic::setBuoyancy(double fpss) {
_buoyancy = fpss;
}
void FGAIBallistic::setWind_from_east(double fps) {
_wind_from_east = fps;
}
void FGAIBallistic::setWind_from_north(double fps) {
_wind_from_north = fps;
}
void FGAIBallistic::setWind(bool val) {
_wind = val;
}
void FGAIBallistic::setCd(double c) {
_Cd = c;
}
void FGAIBallistic::setMass(double m) {
_mass = m;
}
void FGAIBallistic::setWeight(double w) {
_weight_lb = w;
}
void FGAIBallistic::setRandom(bool r) {
_random = r;
}
void FGAIBallistic::setImpact(bool i) {
_report_impact = i;
}
void FGAIBallistic::setCollision(bool c) {
_report_collision = c;
}
void FGAIBallistic::setExternalForce(bool f) {
_external_force = f;
}
void FGAIBallistic::setImpactReportNode(const string& path) {
if (!path.empty())
_impact_report_node = fgGetNode(path.c_str(), true);
}
void FGAIBallistic::setName(const string& n) {
_name = n;
}
void FGAIBallistic::setSMPath(const string& s) {
_submodel = s;
}
void FGAIBallistic::setFuseRange(double f) {
_fuse_range = f;
}
void FGAIBallistic::setSubID(int i) {
_subID = i;
}
void FGAIBallistic::setSubmodel(const string& s) {
_submodel = s;
}
void FGAIBallistic::setGroundOffset(double g) {
_ground_offset = g;
}
void FGAIBallistic::setLoadOffset(double l) {
_load_offset = l;
}
double FGAIBallistic::getLoadOffset() const {
return _load_offset;
}
void FGAIBallistic::setSlaved(bool s) {
_slave_to_ac = s;
}
void FGAIBallistic::setFormate(bool f) {
_formate_to_ac = f;
}
void FGAIBallistic::setContentsNode(const string& path) {
if (!path.empty()) {
_contents_node = fgGetNode(path.c_str(), true);
}
}
bool FGAIBallistic::getSlaved() const {
return _slave_to_ac;
}
double FGAIBallistic::getMass() const {
return _mass;
}
double FGAIBallistic::getContents() {
if(_contents_node)
_contents_lb = _contents_node->getChild("level-lbs",0,1)->getDoubleValue();
return _contents_lb;
}
void FGAIBallistic::setContents(double c) {
if(_contents_node)
_contents_lb = _contents_node->getChild("level-gal_us",0,1)->setDoubleValue(c);
}
void FGAIBallistic::setSlavedLoad(bool l) {
_slave_load_to_ac = l;
}
bool FGAIBallistic::getSlavedLoad() const {
return _slave_load_to_ac;
}
void FGAIBallistic::setForcePath(const string& p) {
_force_path = p;
if (!_force_path.empty()) {
SGPropertyNode *fnode = fgGetNode(_force_path.c_str(), 0, true );
_force_node = fnode->getChild("force-lb", 0, true);
_force_azimuth_node = fnode->getChild("force-azimuth-deg", 0, true);
_force_elevation_node = fnode->getChild("force-elevation-deg", 0, true);
}
}
bool FGAIBallistic::getHtAGL(){
if (globals->get_scenery()->get_elevation_m(SGGeod::fromGeodM(pos, 10000),
_elevation_m, &_material)){
_ht_agl_ft = pos.getElevationFt() - _elevation_m * SG_METER_TO_FEET;
if (_material) {
const vector<string>& names = _material->get_names();
_solid = _material->get_solid();
_load_resistance = _material->get_load_resistance();
_frictionFactor =_material->get_friction_factor();
if (!names.empty())
props->setStringValue("material/name", names[0].c_str());
else
props->setStringValue("material/name", "");
/*cout << "material " << mat_name
<< " solid " << _solid
<< " load " << _load_resistance
<< " frictionFactor " << frictionFactor
<< endl;*/
}
return true;
} else {
return false;
}
}
double FGAIBallistic::getRecip(double az){
// calculate the reciprocal of the input azimuth
if(az - 180 < 0){
return az + 180;
} else {
return az - 180;
}
}
void FGAIBallistic::setPch(double e, double dt, double coeff){
double c = dt / (coeff + dt);
pitch = (e * c) + (pitch * (1 - c));
}
void FGAIBallistic::setBnk(double r, double dt, double coeff){
double c = dt / (coeff + dt);
roll = (r * c) + (roll * (1 - c));
}
void FGAIBallistic::setHt(double h, double dt, double coeff){
double c = dt / (coeff + dt);
_height = (h * c) + (_height * (1 - c));
}
void FGAIBallistic::setHdg(double az, double dt, double coeff){
double recip = getRecip(hdg);
double c = dt / (coeff + dt);
//we need to ensure that we turn the short way to the new hdg
if (az < recip && az < hdg && hdg > 180) {
hdg = ((az + 360) * c) + (hdg * (1 - c));
} else if (az > recip && az > hdg && hdg <= 180){
hdg = ((az - 360) * c) + (hdg * (1 - c));
} else {
hdg = (az * c) + (hdg * (1 - c));
}
}
double FGAIBallistic::getTgtXOffset() const {
return _tgt_x_offset;
}
double FGAIBallistic::getTgtYOffset() const {
return _tgt_y_offset;
}
double FGAIBallistic::getTgtZOffset() const {
return _tgt_z_offset;
}
void FGAIBallistic::setTgtXOffset(double x){
_tgt_x_offset = x;
}
void FGAIBallistic::setTgtYOffset(double y){
_tgt_y_offset = y;
}
void FGAIBallistic::setTgtZOffset(double z){
_tgt_z_offset = z;
}
void FGAIBallistic::slaveToAC(double dt){
setHitchPos();
pos.setLatitudeDeg(hitchpos.getLatitudeDeg());
pos.setLongitudeDeg(hitchpos.getLongitudeDeg());
pos.setElevationFt(hitchpos.getElevationFt());
setHeading(manager->get_user_heading());
setPitch(manager->get_user_pitch() + _pitch_offset);
setBank(manager->get_user_roll() + _roll_offset);
setSpeed(manager->get_user_speed());
//update the mass (slugs)
_mass = (_weight_lb + getContents()) / slugs_to_lbs;
/*cout <<"_mass "<<_mass <<" " << getContents()
<<" " << getContents() / slugs_to_lbs << endl;*/
}
void FGAIBallistic::Run(double dt) {
_life_timer += dt;
// if life = -1 the object does not die
if (_life_timer > life && life != -1)
setDie(true);
//set the contents in the appropriate tank or other property in the parent to zero
setContents(0);
//randomise Cd by +- 5%
if (_random)
_Cd = _Cd * 0.95 + (0.05 * sg_random());
// Adjust Cd by Mach number. The equations are based on curves
// for a conventional shell/bullet (no boat-tail).
double Cdm;
if (Mach < 0.7)
Cdm = 0.0125 * Mach + _Cd;
else if (Mach < 1.2 )
Cdm = 0.3742 * pow(Mach, 2) - 0.252 * Mach + 0.0021 + _Cd;
else
Cdm = 0.2965 * pow(Mach, -1.1506) + _Cd;
//cout << "Mach " << Mach << " Cdm " << Cdm << "// ballistic speed kts "<< speed << endl;
// drag = Cd * 0.5 * rho * speed * speed * drag_area;
// rho is adjusted for altitude in void FGAIBase::update,
// using Standard Atmosphere (sealevel temperature 15C)
// acceleration = drag/mass;
// adjust speed by drag
speed -= (Cdm * 0.5 * rho * speed * speed * _drag_area/_mass) * dt;
// don't let speed become negative
if ( speed < 0.0 )
speed = 0.0;
double speed_fps = speed * SG_KT_TO_FPS;
//double hs;
// calculate vertical and horizontal speed components
if (speed == 0.0) {
hs = vs = 0.0;
} else {
vs = sin( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
hs = cos( _elevation * SG_DEGREES_TO_RADIANS ) * speed_fps;
}
//resolve horizontal speed into north and east components:
double speed_north_fps = cos(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
double speed_east_fps = sin(_azimuth / SG_RADIANS_TO_DEGREES) * hs;
// convert horizontal speed (fps) to degrees per second
double speed_north_deg_sec = speed_north_fps / ft_per_deg_lat;
double speed_east_deg_sec = speed_east_fps / ft_per_deg_lon;
// if wind not required, set to zero
if (!_wind) {
_wind_from_north = 0;
_wind_from_east = 0;
} else {
_wind_from_north = manager->get_wind_from_north();
_wind_from_east = manager->get_wind_from_east();
}
//calculate velocity due to external force
double force_speed_north_deg_sec = 0;
double force_speed_east_deg_sec = 0;
double vs_force_fps = 0;
double hs_force_fps = 0;
double v_force_acc_fpss = 0;
double force_speed_north_fps = 0;
double force_speed_east_fps = 0;
double h_force_lbs = 0;
double normal_force_lbs = 0;
double normal_force_fpss = 0;
double static_friction_force_lbs = 0;
double dynamic_friction_force_lbs = 0;
double friction_force_speed_north_fps = 0;
double friction_force_speed_east_fps = 0;
double friction_force_speed_north_deg_sec = 0;
double friction_force_speed_east_deg_sec = 0;
double force_elevation_deg = 0;
if (_external_force) {
SGPropertyNode *n = fgGetNode(_force_path.c_str(), true);
double force_lbs = n->getChild("force-lb", 0, true)->getDoubleValue();
force_elevation_deg = n->getChild("force-elevation-deg", 0, true)->getDoubleValue();
double force_azimuth_deg = n->getChild("force-azimuth-deg", 0, true)->getDoubleValue();
//resolve force into vertical and horizontal components:
double v_force_lbs = force_lbs * sin( force_elevation_deg * SG_DEGREES_TO_RADIANS );
h_force_lbs = force_lbs * cos( force_elevation_deg * SG_DEGREES_TO_RADIANS );
//ground interaction
if (getHtAGL()){
double deadzone = 0.1;
if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){
normal_force_lbs = (_mass * slugs_to_lbs) - v_force_lbs;
if ( normal_force_lbs < 0 )
normal_force_lbs = 0;
pos.setElevationFt(0 + _ground_offset);
if (vs < 0)
vs = -vs * 0.5;
// calculate friction
// we assume a static Coefficient of Friction (mu) of 0.62 (wood on concrete)
double mu = 0.62;
static_friction_force_lbs = mu * normal_force_lbs * _frictionFactor;
//adjust horizontal force. We assume that a speed of <= 5 fps is static
if (h_force_lbs <= static_friction_force_lbs && hs <= 5){
h_force_lbs = hs = 0;
speed_north_fps = speed_east_fps = 0;
} else
dynamic_friction_force_lbs = (static_friction_force_lbs * 0.95);
//ignore wind when on the ground for now
//TODO fix this
_wind_from_north = 0;
_wind_from_east = 0;
}
}
//acceleration = (force(lbsf)/mass(slugs))
v_force_acc_fpss = v_force_lbs/_mass;
normal_force_fpss = normal_force_lbs/_mass;
double h_force_acc_fpss = h_force_lbs/_mass;
double dynamic_friction_acc_fpss = dynamic_friction_force_lbs/_mass;
// velocity = acceleration * dt
hs_force_fps = h_force_acc_fpss * dt;
double friction_force_fps = dynamic_friction_acc_fpss * dt;
//resolve horizontal speeds into north and east components:
force_speed_north_fps = cos(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
force_speed_east_fps = sin(force_azimuth_deg * SG_DEGREES_TO_RADIANS) * hs_force_fps;
friction_force_speed_north_fps = cos(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
friction_force_speed_east_fps = sin(getRecip(hdg) * SG_DEGREES_TO_RADIANS) * friction_force_fps;
// convert horizontal speed (fps) to degrees per second
force_speed_north_deg_sec = force_speed_north_fps / ft_per_deg_lat;
force_speed_east_deg_sec = force_speed_east_fps / ft_per_deg_lon;
friction_force_speed_north_deg_sec = friction_force_speed_north_fps / ft_per_deg_lat;
friction_force_speed_east_deg_sec = friction_force_speed_east_fps / ft_per_deg_lon;
}
// convert wind speed (fps) to degrees lat/lon per second
double wind_speed_from_north_deg_sec = _wind_from_north / ft_per_deg_lat;
double wind_speed_from_east_deg_sec = _wind_from_east / ft_per_deg_lon;
//recombine the horizontal velocity components
hs = sqrt(((speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps)
* (speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
+ ((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)
* (speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps)));
if (hs <= 0.00001)
hs = 0;
// adjust vertical speed for acceleration of gravity, buoyancy, and vertical force
vs -= (_gravity - _buoyancy - v_force_acc_fpss - normal_force_fpss) * dt;
if (vs <= 0.00001 && vs >= -0.00001)
vs = 0;
// set new position
if(_slave_load_to_ac) {
setHitchPos();
pos.setLatitudeDeg(hitchpos.getLatitudeDeg());
pos.setLongitudeDeg(hitchpos.getLongitudeDeg());
pos.setElevationFt(hitchpos.getElevationFt());
if (getHtAGL()){
double deadzone = 0.1;
if (_ht_agl_ft <= (0 + _ground_offset + deadzone) && _solid){
pos.setElevationFt(0 + _ground_offset);
} else {
pos.setElevationFt(hitchpos.getElevationFt() + _load_offset);
}
}
} else {
pos.setLatitudeDeg( pos.getLatitudeDeg()
+ (speed_north_deg_sec - wind_speed_from_north_deg_sec
+ force_speed_north_deg_sec + friction_force_speed_north_deg_sec) * dt );
pos.setLongitudeDeg( pos.getLongitudeDeg()
+ (speed_east_deg_sec - wind_speed_from_east_deg_sec
+ force_speed_east_deg_sec + friction_force_speed_east_deg_sec) * dt );
pos.setElevationFt(pos.getElevationFt() + vs * dt);
}
// recalculate total speed
if ( vs == 0 && hs == 0)
speed = 0;
else
speed = sqrt( vs * vs + hs * hs) / SG_KT_TO_FPS;
// recalculate elevation and azimuth (velocity vectors)
_elevation = atan2( vs, hs ) * SG_RADIANS_TO_DEGREES;
_azimuth = atan2((speed_east_fps + force_speed_east_fps + friction_force_speed_east_fps),
(speed_north_fps + force_speed_north_fps + friction_force_speed_north_fps))
* SG_RADIANS_TO_DEGREES;
// rationalise azimuth
if (_azimuth < 0)
_azimuth += 360;
if (_aero_stabilised) { // we simulate rotational moment of inertia by using a filter
const double coeff = 0.9;
// we assume a symetrical MI about the pitch and yaw axis
setPch(_elevation, dt, coeff);
setHdg(_azimuth, dt, coeff);
} else if (_force_stabilised) { // we simulate rotational moment of inertia by using a filter
const double coeff = 0.9;
double ratio = h_force_lbs/(_mass * slugs_to_lbs);
if (ratio > 1) ratio = 1;
if (ratio < -1) ratio = -1;
double force_pitch = acos(ratio) * SG_RADIANS_TO_DEGREES;
if (force_pitch <= force_elevation_deg)
force_pitch = force_elevation_deg;
// we assume a symetrical MI about the pitch and yaw axis
setPch(force_pitch,dt, coeff);
setHdg(_azimuth, dt, coeff);
}
//do impacts and collisions
if (_report_impact && !_impact_reported)
handle_impact();
if (_report_collision && !_collision_reported)
handle_collision();
// set destruction flag if altitude less than sea level -1000
if (altitude_ft < -1000.0 && life != -1)
setDie(true);
} // end Run
double FGAIBallistic::_getTime() const {
return _life_timer;
}
void FGAIBallistic::handle_impact() {
// try terrain intersection
if(!getHtAGL())
return;
if (_ht_agl_ft <= 0) {
SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: terrain impact");
report_impact(_elevation_m);
_impact_reported = true;
if (life == -1){
invisible = true;
} else if (_subID == 0) // kill the AIObject if there is no subsubmodel
setDie(true);
}
}
void FGAIBallistic::handle_collision()
{
const FGAIBase *object = manager->calcCollision(pos.getElevationFt(),
pos.getLatitudeDeg(),pos.getLongitudeDeg(), _fuse_range);
if (object) {
SG_LOG(SG_GENERAL, SG_DEBUG, "AIBallistic: object hit");
report_impact(pos.getElevationM(), object);
_collision_reported = true;
}
}
void FGAIBallistic::report_impact(double elevation, const FGAIBase *object)
{
_impact_lat = pos.getLatitudeDeg();
_impact_lon = pos.getLongitudeDeg();
_impact_elev = elevation;
_impact_speed = speed * SG_KT_TO_MPS;
_impact_hdg = hdg;
_impact_pitch = pitch;
_impact_roll = roll;
SGPropertyNode *n = props->getNode("impact", true);
if (object)
n->setStringValue("type", object->getTypeString());
else
n->setStringValue("type", "terrain");
n->setDoubleValue("longitude-deg", _impact_lon);
n->setDoubleValue("latitude-deg", _impact_lat);
n->setDoubleValue("elevation-m", _impact_elev);
n->setDoubleValue("heading-deg", _impact_hdg);
n->setDoubleValue("pitch-deg", _impact_pitch);
n->setDoubleValue("roll-deg", _impact_roll);
n->setDoubleValue("speed-mps", _impact_speed);
_impact_report_node->setStringValue(props->getPath());
}
SGVec3d FGAIBallistic::getCartUserPos() const {
SGVec3d cartUserPos = SGVec3d::fromGeod(userpos);
return cartUserPos;
}
SGVec3d FGAIBallistic::getCartHitchPos() const{
// convert geodetic positions to geocentered
SGVec3d cartuserPos = getCartUserPos();
SGVec3d cartPos = getCartPos();
// Transform to the right coordinate frame, configuration is done in
// the x-forward, y-right, z-up coordinates (feet), computation
// in the simulation usual body x-forward, y-right, z-down coordinates
// (meters) )
SGVec3d _off(_x_offset * SG_FEET_TO_METER,
_y_offset * SG_FEET_TO_METER,
-_z_offset * SG_FEET_TO_METER);
// Transform the user position to the horizontal local coordinate system.
SGQuatd hlTrans = SGQuatd::fromLonLat(userpos);
// and postrotate the orientation of the user model wrt the horizontal
// local frame
hlTrans *= SGQuatd::fromYawPitchRollDeg(
manager->get_user_heading(),
manager->get_user_pitch(),
manager->get_user_roll());
// The offset converted to the usual body fixed coordinate system
// rotated to the earth-fixed coordinates axis
SGVec3d off = hlTrans.backTransform(_off);
// Add the position offset of the user model to get the geocentered position
SGVec3d offsetPos = cartuserPos + off;
return offsetPos;
}
void FGAIBallistic::setHitchPos(){
// convert the hitch geocentered position to geodetic
SGVec3d carthitchPos = getCartHitchPos();
SGGeodesy::SGCartToGeod(carthitchPos, hitchpos);
}
double FGAIBallistic::getDistanceLoadToHitch() const {
//calculate the distance load to hitch
SGVec3d carthitchPos = getCartHitchPos();
SGVec3d cartPos = getCartPos();
SGVec3d diff = carthitchPos - cartPos;
double distance = norm(diff);
return distance * SG_METER_TO_FEET;
}
void FGAIBallistic::setHitchVelocity(double dt) {
//calculate the distance from the previous hitch position
SGVec3d carthitchPos = getCartHitchPos();
SGVec3d diff = carthitchPos - _oldcarthitchPos;
double distance = norm(diff);
//calculate speed knots
speed = (distance/dt) * SG_MPS_TO_KT;
//now calulate the angle between the old and current hitch positions (degrees)
double angle = 0;
double daltM = hitchpos.getElevationM() - oldhitchpos.getElevationM();
if (fabs(distance) < SGLimits<float>::min()) {
angle = 0;
} else {
double sAngle = daltM/distance;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
_elevation = angle;
//calculate the bearing of the new hitch position from the old
double az1, az2, dist;
geo_inverse_wgs_84(oldhitchpos, hitchpos, &az1, &az2, &dist);
_azimuth = az1;
// and finally store the new values
_oldcarthitchPos = carthitchPos;
oldhitchpos = hitchpos;
}
double FGAIBallistic::getElevLoadToHitch() const {
// now the angle, positive angles are upwards
double distance = getDistanceLoadToHitch() * SG_FEET_TO_METER;
double angle = 0;
double daltM = hitchpos.getElevationM() - pos.getElevationM();
if (fabs(distance) < SGLimits<float>::min()) {
angle = 0;
} else {
double sAngle = daltM/distance;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
return angle;
}
double FGAIBallistic::getBearingLoadToHitch() const {
//calculate the bearing and range of the second pos from the first
double az1, az2, distance;
geo_inverse_wgs_84(pos, hitchpos, &az1, &az2, &distance);
return az1;
}
double FGAIBallistic::getRelBrgHitchToUser() const {
//calculate the relative bearing
double az1, az2, distance;
geo_inverse_wgs_84(hitchpos, userpos, &az1, &az2, &distance);
double rel_brg = az1 - hdg;
if (rel_brg > 180)
rel_brg -= 360;
return rel_brg;
}
double FGAIBallistic::getElevHitchToUser() const {
//calculate the distance from the user position
SGVec3d carthitchPos = getCartHitchPos();
SGVec3d cartuserPos = getCartUserPos();
SGVec3d diff = cartuserPos - carthitchPos;
double distance = norm(diff);
double angle = 0;
double daltM = userpos.getElevationM() - hitchpos.getElevationM();
// now the angle, positive angles are upwards
if (fabs(distance) < SGLimits<float>::min()) {
angle = 0;
} else {
double sAngle = daltM/distance;
sAngle = SGMiscd::min(1, SGMiscd::max(-1, sAngle));
angle = SGMiscd::rad2deg(asin(sAngle));
}
return angle;
}
void FGAIBallistic::setTgtOffsets(double dt, double coeff){
double c = dt / (coeff + dt);
_x_offset = (_tgt_x_offset * c) + (_x_offset * (1 - c));
_y_offset = (_tgt_y_offset * c) + (_y_offset * (1 - c));
_z_offset = (_tgt_z_offset * c) + (_z_offset * (1 - c));
}
void FGAIBallistic::formateToAC(double dt){
setTgtOffsets(dt, 25);
setHitchPos();
setHitchVelocity(dt);
// elapsed time has a random initialisation so that each
// wingman moves differently
_elapsed_time += dt;
// we derive a sine based factor to give us smoothly
// varying error between -1 and 1
double factor = sin(SGMiscd::deg2rad(_elapsed_time * 10));
double r_angle = 5 * factor;
double p_angle = 2.5 * factor;
double h_angle = 5 * factor;
double h_feet = 3 * factor;
pos.setLatitudeDeg(hitchpos.getLatitudeDeg());
pos.setLongitudeDeg(hitchpos.getLongitudeDeg());
if (getHtAGL()){
if(_ht_agl_ft <= 10) {
_height = userpos.getElevationFt();
} else if (_ht_agl_ft > 10 && _ht_agl_ft <= 150 ) {
setHt(userpos.getElevationFt(), dt, 1.0);
} else if (_ht_agl_ft > 150 && _ht_agl_ft <= 250) {
setHt(hitchpos.getElevationFt()+ h_feet, dt, 0.75);
} else
setHt(hitchpos.getElevationFt()+ h_feet, dt, 0.5);
pos.setElevationFt(_height);
}
// these calculations are unreliable at slow speeds
if(speed >= 10) {
setHdg(_azimuth + h_angle, dt, 0.9);
setPch(_elevation + p_angle + _pitch_offset, dt, 0.9);
if (roll <= 115 && roll >= -115)
setBnk(manager->get_user_roll() + r_angle + _roll_offset, dt, 0.5);
else
roll = manager->get_user_roll() + r_angle + _roll_offset;
} else {
setHdg(manager->get_user_heading(), dt, 0.9);
setPch(manager->get_user_pitch() + _pitch_offset, dt, 0.9);
setBnk(manager->get_user_roll() + _roll_offset, dt, 0.9);
}
setSpeed(speed);
}
// end AIBallistic