1
0
Fork 0
flightgear/src/AIModel/submodel.cxx

367 lines
12 KiB
C++

// submodel.cxx - models a releasable submodel.
// Written by Dave Culp, started Aug 2004
//
// This file is in the Public Domain and comes with no warranty.
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "submodel.hxx"
#include <simgear/structure/exception.hxx>
#include <simgear/misc/sg_path.hxx>
#include <Main/fg_props.hxx>
#include <Main/util.hxx>
#include <AIModel/AIManager.hxx>
#include <AIModel/AIBallistic.hxx>
const double FGSubmodelMgr::lbs_to_slugs = 0.031080950172;
FGSubmodelMgr::FGSubmodelMgr ()
{
x_offset = y_offset = 0.0;
z_offset = -4.0;
pitch_offset = 2.0;
yaw_offset = 0.0;
out[0] = out[1] = out[2] = 0;
in[3] = out[3] = 1;
string contents_node;
contrail_altitude = 30000.0;
}
FGSubmodelMgr::~FGSubmodelMgr ()
{
}
void
FGSubmodelMgr::init ()
{
load();
_serviceable_node = fgGetNode("/sim/submodels/serviceable", true);
_user_lat_node = fgGetNode("/position/latitude-deg", true);
_user_lon_node = fgGetNode("/position/longitude-deg", true);
_user_alt_node = fgGetNode("/position/altitude-ft", true);
_user_heading_node = fgGetNode("/orientation/heading-deg", true);
_user_pitch_node = fgGetNode("/orientation/pitch-deg", true);
_user_roll_node = fgGetNode("/orientation/roll-deg", true);
_user_yaw_node = fgGetNode("/orientation/yaw-deg", true);
_user_alpha_node = fgGetNode("/orientation/alpha-deg", true);
_user_speed_node = fgGetNode("/velocities/uBody-fps", true);
_user_wind_from_east_node = fgGetNode("/environment/wind-from-east-fps",true);
_user_wind_from_north_node = fgGetNode("/environment/wind-from-north-fps",true);
_user_speed_down_fps_node = fgGetNode("/velocities/speed-down-fps",true);
_user_speed_east_fps_node = fgGetNode("/velocities/speed-east-fps",true);
_user_speed_north_fps_node = fgGetNode("/velocities/speed-north-fps",true);
_contrail_altitude_node = fgGetNode("/environment/params/contrail-altitude", true);
contrail_altitude = _contrail_altitude_node->getDoubleValue();
_contrail_trigger = fgGetNode("ai/submodels/contrails", true);
_contrail_trigger->setBoolValue(false);
ai = (FGAIManager*)globals->get_subsystem("ai_model");
}
void
FGSubmodelMgr::bind ()
{
}
void
FGSubmodelMgr::unbind ()
{
submodel_iterator = submodels.begin();
while(submodel_iterator != submodels.end()) {
(*submodel_iterator)->prop->untie("count");
++submodel_iterator;
}
}
void
FGSubmodelMgr::update (double dt)
{
if (!(_serviceable_node->getBoolValue())) return;
int i=-1;
_contrail_trigger->setBoolValue(_user_alt_node->getDoubleValue() > contrail_altitude);
submodel_iterator = submodels.begin();
while(submodel_iterator != submodels.end()) {
i++;
if ((*submodel_iterator)->trigger->getBoolValue()) {
if ((*submodel_iterator)->count != 0) {
release( (*submodel_iterator), dt);
}
} else {
(*submodel_iterator)->first_time = true;
}
++submodel_iterator;
}
}
bool
FGSubmodelMgr::release (submodel* sm, double dt)
{
// only run if first time or repeat is set to true
if (!sm->first_time && !sm->repeat) return false;
sm->timer += dt;
if (sm->timer < sm->delay) return false;
sm->timer = 0.0;
if (sm->first_time) {
dt = 0.0;
sm->first_time = false;
}
transform(sm); // calculate submodel's initial conditions in world-coordinates
FGAIBallistic* ballist = new FGAIBallistic;
ballist->setPath(sm->model.c_str());
ballist->setLatitude(IC.lat);
ballist->setLongitude(IC.lon);
ballist->setAltitude(IC.alt);
ballist->setAzimuth(IC.azimuth);
ballist->setElevation(IC.elevation);
ballist->setRoll(IC.roll);
ballist->setSpeed(IC.speed);
ballist->setDragArea(sm->drag_area);
ballist->setLife(sm->life);
ballist->setBuoyancy(sm->buoyancy);
ballist->setWind_from_east(IC.wind_from_east);
ballist->setWind_from_north(IC.wind_from_north);
ballist->setWind(sm->wind);
ballist->setCd(sm->cd);
ballist->setMass(IC.mass);
ballist->setStabilisation(sm->aero_stabilised);
ai->attach(ballist);
if (sm->count > 0) (sm->count)--;
return true;
}
void
FGSubmodelMgr::load ()
{
SGPropertyNode *path = fgGetNode("/sim/submodels/path");
SGPropertyNode root;
if (path) {
SGPath config( globals->get_fg_root() );
config.append( path->getStringValue() );
try {
readProperties(config.str(), &root);
} catch (const sg_exception &e) {
SG_LOG(SG_GENERAL, SG_ALERT,
"Unable to read submodels file: ");
cout << config.str() << endl;
return;
}
}
vector<SGPropertyNode_ptr> children = root.getChildren("submodel");
vector<SGPropertyNode_ptr>::iterator it = children.begin();
vector<SGPropertyNode_ptr>::iterator end = children.end();
for (int i = 0; it != end; ++it, i++) {
// cout << "Reading submodel " << (*it)->getPath() << endl;
submodel* sm = new submodel;
SGPropertyNode * entry_node = *it;
sm->trigger = fgGetNode(entry_node->getStringValue("trigger", "none"), true);
sm->name = entry_node->getStringValue("name", "none_defined");
sm->model = entry_node->getStringValue("model", "Models/Geometry/rocket.ac");
sm->speed = entry_node->getDoubleValue("speed", 2329.4 );
sm->repeat = entry_node->getBoolValue ("repeat", false);
sm->delay = entry_node->getDoubleValue("delay", 0.25);
sm->count = entry_node->getIntValue ("count", 1);
sm->slaved = entry_node->getBoolValue ("slaved", false);
sm->x_offset = entry_node->getDoubleValue("x-offset", 0.0);
sm->y_offset = entry_node->getDoubleValue("y-offset", 0.0);
sm->z_offset = entry_node->getDoubleValue("z-offset", 0.0);
sm->yaw_offset = entry_node->getDoubleValue("yaw-offset", 0.0);
sm->pitch_offset = entry_node->getDoubleValue("pitch-offset", 0.0);
sm->drag_area = entry_node->getDoubleValue("eda", 0.034);
sm->life = entry_node->getDoubleValue("life", 900.0);
sm->buoyancy = entry_node->getDoubleValue("buoyancy", 0);
sm->wind = entry_node->getBoolValue ("wind", false);
sm->first_time = false;
sm->cd = entry_node->getDoubleValue("cd", 0.193);
sm->weight = entry_node->getDoubleValue("weight", 0.25);
sm->aero_stabilised = entry_node->getBoolValue ("aero-stabilised", true);
sm->contents_node = fgGetNode(entry_node->getStringValue("contents", "none"), true);
sm->trigger->setBoolValue(false);
sm->timer = sm->delay;
sm->contents = sm->contents_node->getDoubleValue();
sm->prop = fgGetNode("/ai/submodels/submodel", i, true);
sm->prop->tie("count", SGRawValuePointer<int>(&(sm->count)));
sm->prop->tie("repeat", SGRawValuePointer<bool>(&(sm->repeat)));
// sm->prop->tie("contents", SGRawValuePointer<double>(&(sm->contents)));
// sm->prop->tie("contents path", SGRawValuePointer<const char *>(&(sm->contents_node)));
submodels.push_back( sm );
}
submodel_iterator = submodels.begin();
}
void
FGSubmodelMgr::transform( submodel* sm)
{
// get initial conditions
// get the weight of the contents (lbs) and convert to mass (slugs)
sm->contents = sm->contents_node->getDoubleValue();
IC.mass = (sm->weight + sm->contents) * lbs_to_slugs;;
// cout << IC.mass << endl;
// set contents to 0 in the parent
sm->contents_node->setDoubleValue(0);
IC.lat = _user_lat_node->getDoubleValue();
IC.lon = _user_lon_node->getDoubleValue();
IC.alt = _user_alt_node->getDoubleValue();
IC.roll = _user_roll_node->getDoubleValue(); // rotation about x axis
IC.elevation = _user_pitch_node->getDoubleValue(); // rotation about y axis
IC.azimuth = _user_heading_node->getDoubleValue(); // rotation about z axis
IC.speed = _user_speed_node->getDoubleValue();
IC.wind_from_east = _user_wind_from_east_node->getDoubleValue();
IC.wind_from_north = _user_wind_from_north_node->getDoubleValue();
IC.speed_down_fps = _user_speed_down_fps_node->getDoubleValue();
IC.speed_east_fps = _user_speed_east_fps_node->getDoubleValue();
IC.speed_north_fps = _user_speed_north_fps_node->getDoubleValue();
in[0] = sm->x_offset;
in[1] = sm->y_offset;
in[2] = sm->z_offset;
// pre-process the trig functions
cosRx = cos(-IC.roll * SG_DEGREES_TO_RADIANS);
sinRx = sin(-IC.roll * SG_DEGREES_TO_RADIANS);
cosRy = cos(-IC.elevation * SG_DEGREES_TO_RADIANS);
sinRy = sin(-IC.elevation * SG_DEGREES_TO_RADIANS);
cosRz = cos(IC.azimuth * SG_DEGREES_TO_RADIANS);
sinRz = sin(IC.azimuth * SG_DEGREES_TO_RADIANS);
// set up the transform matrix
trans[0][0] = cosRy * cosRz;
trans[0][1] = -1 * cosRx * sinRz + sinRx * sinRy * cosRz ;
trans[0][2] = sinRx * sinRz + cosRx * sinRy * cosRz;
trans[1][0] = cosRy * sinRz;
trans[1][1] = cosRx * cosRz + sinRx * sinRy * sinRz;
trans[1][2] = -1 * sinRx * cosRx + cosRx * sinRy * sinRz;
trans[2][0] = -1 * sinRy;
trans[2][1] = sinRx * cosRy;
trans[2][2] = cosRx * cosRy;
// multiply the input and transform matrices
out[0] = in[0] * trans[0][0] + in[1] * trans[0][1] + in[2] * trans[0][2];
out[1] = in[0] * trans[1][0] + in[1] * trans[1][1] + in[2] * trans[1][2];
out[2] = in[0] * trans[2][0] + in[1] * trans[2][1] + in[2] * trans[2][2];
// convert ft to degrees of latitude
out[0] = out[0] /(366468.96 - 3717.12 * cos(IC.lat * SG_DEGREES_TO_RADIANS));
// convert ft to degrees of longitude
out[1] = out[1] /(365228.16 * cos(IC.lat * SG_DEGREES_TO_RADIANS));
// set submodel initial position
IC.lat += out[0];
IC.lon += out[1];
IC.alt += out[2];
// get aircraft velocity vector angles in XZ and XY planes
//double alpha = _user_alpha_node->getDoubleValue();
//double velXZ = IC.elevation - alpha * cosRx;
//double velXY = IC.azimuth - (IC.elevation - alpha * sinRx);
// Get submodel initial velocity vector angles in XZ and XY planes.
// This needs to be fixed. This vector should be added to aircraft's vector.
IC.elevation += (sm->yaw_offset * sinRx) + (sm->pitch_offset * cosRx);
IC.azimuth += (sm->yaw_offset * cosRx) - (sm->pitch_offset * sinRx);
// For now assume vector is close to airplane's vector. This needs to be fixed.
//IC.speed += ;
// calcuate the total speed north
IC.total_speed_north = sm->speed * cos(IC.elevation*SG_DEGREES_TO_RADIANS)*
cos(IC.azimuth*SG_DEGREES_TO_RADIANS) + IC.speed_north_fps;
// calculate the total speed east
IC.total_speed_east = sm->speed * cos(IC.elevation*SG_DEGREES_TO_RADIANS)*
sin(IC.azimuth*SG_DEGREES_TO_RADIANS) + IC.speed_east_fps;
// calculate the total speed down
IC.total_speed_down = sm->speed * -sin(IC.elevation*SG_DEGREES_TO_RADIANS) +
IC.speed_down_fps;
// re-calculate speed, elevation and azimuth
IC.speed = sqrt( IC.total_speed_north * IC.total_speed_north +
IC.total_speed_east * IC.total_speed_east +
IC.total_speed_down * IC.total_speed_down);
IC.azimuth = atan(IC.total_speed_east/IC.total_speed_north) * SG_RADIANS_TO_DEGREES;
// rationalise the output
if (IC.total_speed_north <= 0){
IC.azimuth = 180 + IC.azimuth;
}
else{
if(IC.total_speed_east <= 0){
IC.azimuth = 360 + IC.azimuth;
}
}
IC.elevation = -atan(IC.total_speed_down/sqrt(IC.total_speed_north *
IC.total_speed_north +
IC.total_speed_east * IC.total_speed_east)) * SG_RADIANS_TO_DEGREES;
}
void
FGSubmodelMgr::updatelat(double lat)
{
double latitude = lat;
ft_per_deg_latitude = 366468.96 - 3717.12 * cos(latitude / SG_RADIANS_TO_DEGREES);
ft_per_deg_longitude = 365228.16 * cos(latitude / SG_RADIANS_TO_DEGREES);
}
// end of submodel.cxx