1
0
Fork 0
flightgear/utils/iaxclient/lib/libspeex/ltp.c
f-jjth d03b44b662 FGCom integrated into FlightGear.
Disabled by default at build time.
2013-08-16 17:02:47 +01:00

828 lines
23 KiB
C

/* Copyright (C) 2002 Jean-Marc Valin
File: ltp.c
Long-Term Prediction functions
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "ltp.h"
#include "stack_alloc.h"
#include "filters.h"
#include <speex/speex_bits.h>
#include "math_approx.h"
#ifndef NULL
#define NULL 0
#endif
#ifdef _USE_SSE
#include "ltp_sse.h"
#elif defined (ARM4_ASM) || defined(ARM5E_ASM)
#include "ltp_arm4.h"
#else
static spx_word32_t inner_prod(const spx_word16_t *x, const spx_word16_t *y, int len)
{
spx_word32_t sum=0;
len >>= 2;
while(len--)
{
spx_word32_t part=0;
part = MAC16_16(part,*x++,*y++);
part = MAC16_16(part,*x++,*y++);
part = MAC16_16(part,*x++,*y++);
part = MAC16_16(part,*x++,*y++);
/* HINT: If you had a 40-bit accumulator, you could shift only at the end */
sum = ADD32(sum,SHR32(part,6));
}
return sum;
}
#if 0 /* HINT: Enable this for machines with enough registers (i.e. not x86) */
static void pitch_xcorr(const spx_word16_t *_x, const spx_word16_t *_y, spx_word32_t *corr, int len, int nb_pitch, char *stack)
{
int i,j;
for (i=0;i<nb_pitch;i+=4)
{
/* Compute correlation*/
/*corr[nb_pitch-1-i]=inner_prod(x, _y+i, len);*/
spx_word32_t sum1=0;
spx_word32_t sum2=0;
spx_word32_t sum3=0;
spx_word32_t sum4=0;
const spx_word16_t *y = _y+i;
const spx_word16_t *x = _x;
spx_word16_t y0, y1, y2, y3;
/*y0=y[0];y1=y[1];y2=y[2];y3=y[3];*/
y0=*y++;
y1=*y++;
y2=*y++;
y3=*y++;
for (j=0;j<len;j+=4)
{
spx_word32_t part1;
spx_word32_t part2;
spx_word32_t part3;
spx_word32_t part4;
part1 = MULT16_16(*x,y0);
part2 = MULT16_16(*x,y1);
part3 = MULT16_16(*x,y2);
part4 = MULT16_16(*x,y3);
x++;
y0=*y++;
part1 = MAC16_16(part1,*x,y1);
part2 = MAC16_16(part2,*x,y2);
part3 = MAC16_16(part3,*x,y3);
part4 = MAC16_16(part4,*x,y0);
x++;
y1=*y++;
part1 = MAC16_16(part1,*x,y2);
part2 = MAC16_16(part2,*x,y3);
part3 = MAC16_16(part3,*x,y0);
part4 = MAC16_16(part4,*x,y1);
x++;
y2=*y++;
part1 = MAC16_16(part1,*x,y3);
part2 = MAC16_16(part2,*x,y0);
part3 = MAC16_16(part3,*x,y1);
part4 = MAC16_16(part4,*x,y2);
x++;
y3=*y++;
sum1 = ADD32(sum1,SHR32(part1,6));
sum2 = ADD32(sum2,SHR32(part2,6));
sum3 = ADD32(sum3,SHR32(part3,6));
sum4 = ADD32(sum4,SHR32(part4,6));
}
corr[nb_pitch-1-i]=sum1;
corr[nb_pitch-2-i]=sum2;
corr[nb_pitch-3-i]=sum3;
corr[nb_pitch-4-i]=sum4;
}
}
#else
static void pitch_xcorr(const spx_word16_t *_x, const spx_word16_t *_y, spx_word32_t *corr, int len, int nb_pitch, char *stack)
{
int i;
for (i=0;i<nb_pitch;i++)
{
/* Compute correlation*/
corr[nb_pitch-1-i]=inner_prod(_x, _y+i, len);
}
}
#endif
#endif
void open_loop_nbest_pitch(spx_sig_t *sw, int start, int end, int len, int *pitch, spx_word16_t *gain, int N, char *stack)
{
int i,j,k;
VARDECL(spx_word32_t *best_score);
spx_word32_t e0;
VARDECL(spx_word32_t *corr);
VARDECL(spx_word32_t *energy);
VARDECL(spx_word32_t *score);
#ifdef FIXED_POINT
VARDECL(spx_word16_t *swn2);
#endif
spx_word16_t *swn;
ALLOC(best_score, N, spx_word32_t);
ALLOC(corr, end-start+1, spx_word32_t);
ALLOC(energy, end-start+2, spx_word32_t);
ALLOC(score, end-start+1, spx_word32_t);
#ifdef FIXED_POINT
ALLOC(swn2, end+len, spx_word16_t);
normalize16(sw-end, swn2, 16384, end+len);
swn = swn2 + end;
#else
swn = sw;
#endif
for (i=0;i<N;i++)
{
best_score[i]=-1;
pitch[i]=start;
}
energy[0]=inner_prod(swn-start, swn-start, len);
e0=inner_prod(swn, swn, len);
for (i=start;i<=end;i++)
{
/* Update energy for next pitch*/
energy[i-start+1] = SUB32(ADD32(energy[i-start],SHR32(MULT16_16(swn[-i-1],swn[-i-1]),6)), SHR32(MULT16_16(swn[-i+len-1],swn[-i+len-1]),6));
}
pitch_xcorr(swn, swn-end, corr, len, end-start+1, stack);
#ifdef FIXED_POINT
{
VARDECL(spx_word16_t *corr16);
VARDECL(spx_word16_t *ener16);
ALLOC(corr16, end-start+1, spx_word16_t);
ALLOC(ener16, end-start+1, spx_word16_t);
normalize16(corr, corr16, 16384, end-start+1);
normalize16(energy, ener16, 16384, end-start+1);
for (i=start;i<=end;i++)
{
spx_word16_t g;
spx_word32_t tmp;
tmp = corr16[i-start];
if (tmp>0)
{
if (SHR16(corr16[i-start],4)>ener16[i-start])
tmp = SHL32(EXTEND32(ener16[i-start]),14);
else if (-SHR16(corr16[i-start],4)>ener16[i-start])
tmp = -SHL32(EXTEND32(ener16[i-start]),14);
else
tmp = SHL32(tmp,10);
g = DIV32_16(tmp, 8+ener16[i-start]);
score[i-start] = MULT16_16(corr16[i-start],g);
} else
{
score[i-start] = 1;
}
}
}
#else
for (i=start;i<=end;i++)
{
float g = corr[i-start]/(1+energy[i-start]);
if (g>16)
g = 16;
else if (g<-16)
g = -16;
score[i-start] = g*corr[i-start];
}
#endif
/* Extract best scores */
for (i=start;i<=end;i++)
{
if (score[i-start]>best_score[N-1])
{
for (j=0;j<N;j++)
{
if (score[i-start] > best_score[j])
{
for (k=N-1;k>j;k--)
{
best_score[k]=best_score[k-1];
pitch[k]=pitch[k-1];
}
best_score[j]=score[i-start];
pitch[j]=i;
break;
}
}
}
}
/* Compute open-loop gain */
if (gain)
{
for (j=0;j<N;j++)
{
spx_word16_t g;
i=pitch[j];
g = DIV32(corr[i-start], 10+SHR32(MULT16_16(spx_sqrt(e0),spx_sqrt(energy[i-start])),6));
/* FIXME: g = max(g,corr/energy) */
if (g<0)
g = 0;
gain[j]=g;
}
}
}
/** Finds the best quantized 3-tap pitch predictor by analysis by synthesis */
static spx_word64_t pitch_gain_search_3tap(
const spx_sig_t target[], /* Target vector */
const spx_coef_t ak[], /* LPCs for this subframe */
const spx_coef_t awk1[], /* Weighted LPCs #1 for this subframe */
const spx_coef_t awk2[], /* Weighted LPCs #2 for this subframe */
spx_sig_t exc[], /* Excitation */
const void *par,
int pitch, /* Pitch value */
int p, /* Number of LPC coeffs */
int nsf, /* Number of samples in subframe */
SpeexBits *bits,
char *stack,
const spx_sig_t *exc2,
const spx_word16_t *r,
spx_sig_t *new_target,
int *cdbk_index,
int cdbk_offset,
int plc_tuning
)
{
int i,j;
VARDECL(spx_sig_t *tmp1);
VARDECL(spx_sig_t *tmp2);
spx_sig_t *x[3];
spx_sig_t *e[3];
spx_word32_t corr[3];
spx_word32_t A[3][3];
int gain_cdbk_size;
const signed char *gain_cdbk;
spx_word16_t gain[3];
spx_word64_t err;
const ltp_params *params;
params = (const ltp_params*) par;
gain_cdbk_size = 1<<params->gain_bits;
gain_cdbk = params->gain_cdbk + 3*gain_cdbk_size*cdbk_offset;
ALLOC(tmp1, 3*nsf, spx_sig_t);
ALLOC(tmp2, 3*nsf, spx_sig_t);
x[0]=tmp1;
x[1]=tmp1+nsf;
x[2]=tmp1+2*nsf;
e[0]=tmp2;
e[1]=tmp2+nsf;
e[2]=tmp2+2*nsf;
for (i=2;i>=0;i--)
{
int pp=pitch+1-i;
for (j=0;j<nsf;j++)
{
if (j-pp<0)
e[i][j]=exc2[j-pp];
else if (j-pp-pitch<0)
e[i][j]=exc2[j-pp-pitch];
else
e[i][j]=0;
}
if (i==2)
syn_percep_zero(e[i], ak, awk1, awk2, x[i], nsf, p, stack);
else {
for (j=0;j<nsf-1;j++)
x[i][j+1]=x[i+1][j];
x[i][0]=0;
for (j=0;j<nsf;j++)
{
x[i][j]=ADD32(x[i][j],SHL32(MULT16_32_Q15(r[j], e[i][0]),1));
}
}
}
#ifdef FIXED_POINT
{
/* If using fixed-point, we need to normalize the signals first */
spx_word16_t *y[3];
VARDECL(spx_word16_t *ytmp);
VARDECL(spx_word16_t *t);
spx_sig_t max_val=1;
int sig_shift;
ALLOC(ytmp, 3*nsf, spx_word16_t);
#if 0
ALLOC(y[0], nsf, spx_word16_t);
ALLOC(y[1], nsf, spx_word16_t);
ALLOC(y[2], nsf, spx_word16_t);
#else
y[0] = ytmp;
y[1] = ytmp+nsf;
y[2] = ytmp+2*nsf;
#endif
ALLOC(t, nsf, spx_word16_t);
for (j=0;j<3;j++)
{
for (i=0;i<nsf;i++)
{
spx_sig_t tmp = x[j][i];
if (tmp<0)
tmp = -tmp;
if (tmp > max_val)
max_val = tmp;
}
}
for (i=0;i<nsf;i++)
{
spx_sig_t tmp = target[i];
if (tmp<0)
tmp = -tmp;
if (tmp > max_val)
max_val = tmp;
}
sig_shift=0;
while (max_val>16384)
{
sig_shift++;
max_val >>= 1;
}
for (j=0;j<3;j++)
{
for (i=0;i<nsf;i++)
{
y[j][i] = EXTRACT16(SHR32(x[j][i],sig_shift));
}
}
for (i=0;i<nsf;i++)
{
t[i] = EXTRACT16(SHR32(target[i],sig_shift));
}
for (i=0;i<3;i++)
corr[i]=inner_prod(y[i],t,nsf);
for (i=0;i<3;i++)
for (j=0;j<=i;j++)
A[i][j]=A[j][i]=inner_prod(y[i],y[j],nsf);
}
#else
{
for (i=0;i<3;i++)
corr[i]=inner_prod(x[i],target,nsf);
for (i=0;i<3;i++)
for (j=0;j<=i;j++)
A[i][j]=A[j][i]=inner_prod(x[i],x[j],nsf);
}
#endif
{
spx_word32_t C[9];
const signed char *ptr=gain_cdbk;
int best_cdbk=0;
spx_word32_t best_sum=0;
C[0]=corr[2];
C[1]=corr[1];
C[2]=corr[0];
C[3]=A[1][2];
C[4]=A[0][1];
C[5]=A[0][2];
C[6]=A[2][2];
C[7]=A[1][1];
C[8]=A[0][0];
/*plc_tuning *= 2;*/
if (plc_tuning<2)
plc_tuning=2;
#ifdef FIXED_POINT
C[0] = MAC16_32_Q15(C[0],MULT16_16_16(plc_tuning,-327),C[0]);
C[1] = MAC16_32_Q15(C[1],MULT16_16_16(plc_tuning,-327),C[1]);
C[2] = MAC16_32_Q15(C[2],MULT16_16_16(plc_tuning,-327),C[2]);
#else
C[0]*=1-.01*plc_tuning;
C[1]*=1-.01*plc_tuning;
C[2]*=1-.01*plc_tuning;
C[6]*=.5*(1+.01*plc_tuning);
C[7]*=.5*(1+.01*plc_tuning);
C[8]*=.5*(1+.01*plc_tuning);
#endif
for (i=0;i<gain_cdbk_size;i++)
{
spx_word32_t sum=0;
spx_word16_t g0,g1,g2;
spx_word16_t pitch_control=64;
spx_word16_t gain_sum;
ptr = gain_cdbk+3*i;
g0=ADD16((spx_word16_t)ptr[0],32);
g1=ADD16((spx_word16_t)ptr[1],32);
g2=ADD16((spx_word16_t)ptr[2],32);
gain_sum = g1;
if (g0>0)
gain_sum += g0;
if (g2>0)
gain_sum += g2;
if (gain_sum > 64)
{
gain_sum = SUB16(gain_sum, 64);
if (gain_sum > 127)
gain_sum = 127;
#ifdef FIXED_POINT
pitch_control = SUB16(64,EXTRACT16(PSHR32(MULT16_16(64,MULT16_16_16(plc_tuning, gain_sum)),10)));
#else
pitch_control = 64*(1.-.001*plc_tuning*gain_sum);
#endif
if (pitch_control < 0)
pitch_control = 0;
}
sum = ADD32(sum,MULT16_32_Q14(MULT16_16_16(g0,pitch_control),C[0]));
sum = ADD32(sum,MULT16_32_Q14(MULT16_16_16(g1,pitch_control),C[1]));
sum = ADD32(sum,MULT16_32_Q14(MULT16_16_16(g2,pitch_control),C[2]));
sum = SUB32(sum,MULT16_32_Q14(MULT16_16_16(g0,g1),C[3]));
sum = SUB32(sum,MULT16_32_Q14(MULT16_16_16(g2,g1),C[4]));
sum = SUB32(sum,MULT16_32_Q14(MULT16_16_16(g2,g0),C[5]));
sum = SUB32(sum,MULT16_32_Q15(MULT16_16_16(g0,g0),C[6]));
sum = SUB32(sum,MULT16_32_Q15(MULT16_16_16(g1,g1),C[7]));
sum = SUB32(sum,MULT16_32_Q15(MULT16_16_16(g2,g2),C[8]));
/* We could force "safe" pitch values to handle packet loss better */
if (sum>best_sum || i==0)
{
best_sum=sum;
best_cdbk=i;
}
}
#ifdef FIXED_POINT
gain[0] = ADD16(32,(spx_word16_t)gain_cdbk[best_cdbk*3]);
gain[1] = ADD16(32,(spx_word16_t)gain_cdbk[best_cdbk*3+1]);
gain[2] = ADD16(32,(spx_word16_t)gain_cdbk[best_cdbk*3+2]);
/*printf ("%d %d %d %d\n",gain[0],gain[1],gain[2], best_cdbk);*/
#else
gain[0] = 0.015625*gain_cdbk[best_cdbk*3] + .5;
gain[1] = 0.015625*gain_cdbk[best_cdbk*3+1]+ .5;
gain[2] = 0.015625*gain_cdbk[best_cdbk*3+2]+ .5;
#endif
*cdbk_index=best_cdbk;
}
#ifdef FIXED_POINT
for (i=0;i<nsf;i++)
exc[i]=SHL32(ADD32(ADD32(MULT16_32_Q15(SHL16(gain[0],7),e[2][i]), MULT16_32_Q15(SHL16(gain[1],7),e[1][i])),
MULT16_32_Q15(SHL16(gain[2],7),e[0][i])), 2);
err=0;
for (i=0;i<nsf;i++)
{
spx_word16_t perr2;
spx_sig_t tmp = SHL32(ADD32(ADD32(MULT16_32_Q15(SHL16(gain[0],7),x[2][i]),MULT16_32_Q15(SHL16(gain[1],7),x[1][i])),
MULT16_32_Q15(SHL16(gain[2],7),x[0][i])),2);
spx_sig_t perr=SUB32(target[i],tmp);
new_target[i] = SUB32(target[i], tmp);
perr2 = EXTRACT16(PSHR32(perr,15));
err = ADD64(err,MULT16_16(perr2,perr2));
}
#else
for (i=0;i<nsf;i++)
exc[i]=gain[0]*e[2][i]+gain[1]*e[1][i]+gain[2]*e[0][i];
err=0;
for (i=0;i<nsf;i++)
{
spx_sig_t tmp = gain[2]*x[0][i]+gain[1]*x[1][i]+gain[0]*x[2][i];
new_target[i] = target[i] - tmp;
err+=new_target[i]*new_target[i];
}
#endif
return err;
}
/** Finds the best quantized 3-tap pitch predictor by analysis by synthesis */
int pitch_search_3tap(
spx_sig_t target[], /* Target vector */
spx_sig_t *sw,
spx_coef_t ak[], /* LPCs for this subframe */
spx_coef_t awk1[], /* Weighted LPCs #1 for this subframe */
spx_coef_t awk2[], /* Weighted LPCs #2 for this subframe */
spx_sig_t exc[], /* Excitation */
const void *par,
int start, /* Smallest pitch value allowed */
int end, /* Largest pitch value allowed */
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
int p, /* Number of LPC coeffs */
int nsf, /* Number of samples in subframe */
SpeexBits *bits,
char *stack,
spx_sig_t *exc2,
spx_word16_t *r,
int complexity,
int cdbk_offset,
int plc_tuning
)
{
int i,j;
int cdbk_index, pitch=0, best_gain_index=0;
VARDECL(spx_sig_t *best_exc);
VARDECL(spx_sig_t *new_target);
VARDECL(spx_sig_t *best_target);
int best_pitch=0;
spx_word64_t err, best_err=-1;
int N;
const ltp_params *params;
VARDECL(int *nbest);
N=complexity;
if (N>10)
N=10;
if (N<1)
N=1;
ALLOC(nbest, N, int);
params = (const ltp_params*) par;
if (end<start)
{
speex_bits_pack(bits, 0, params->pitch_bits);
speex_bits_pack(bits, 0, params->gain_bits);
for (i=0;i<nsf;i++)
exc[i]=0;
return start;
}
ALLOC(best_exc, nsf, spx_sig_t);
ALLOC(new_target, nsf, spx_sig_t);
ALLOC(best_target, nsf, spx_sig_t);
if (N>end-start+1)
N=end-start+1;
open_loop_nbest_pitch(sw, start, end, nsf, nbest, NULL, N, stack);
for (i=0;i<N;i++)
{
pitch=nbest[i];
for (j=0;j<nsf;j++)
exc[j]=0;
err=pitch_gain_search_3tap(target, ak, awk1, awk2, exc, par, pitch, p, nsf,
bits, stack, exc2, r, new_target, &cdbk_index, cdbk_offset, plc_tuning);
if (err<best_err || best_err<0)
{
for (j=0;j<nsf;j++)
best_exc[j]=exc[j];
for (j=0;j<nsf;j++)
best_target[j]=new_target[j];
best_err=err;
best_pitch=pitch;
best_gain_index=cdbk_index;
}
}
/*printf ("pitch: %d %d\n", best_pitch, best_gain_index);*/
speex_bits_pack(bits, best_pitch-start, params->pitch_bits);
speex_bits_pack(bits, best_gain_index, params->gain_bits);
/*printf ("encode pitch: %d %d\n", best_pitch, best_gain_index);*/
for (i=0;i<nsf;i++)
exc[i]=best_exc[i];
for (i=0;i<nsf;i++)
target[i]=best_target[i];
return pitch;
}
void pitch_unquant_3tap(
spx_sig_t exc[], /* Excitation */
int start, /* Smallest pitch value allowed */
int end, /* Largest pitch value allowed */
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
const void *par,
int nsf, /* Number of samples in subframe */
int *pitch_val,
spx_word16_t *gain_val,
SpeexBits *bits,
char *stack,
int count_lost,
int subframe_offset,
spx_word16_t last_pitch_gain,
int cdbk_offset
)
{
int i;
int pitch;
int gain_index;
spx_word16_t gain[3];
const signed char *gain_cdbk;
int gain_cdbk_size;
const ltp_params *params;
params = (const ltp_params*) par;
gain_cdbk_size = 1<<params->gain_bits;
gain_cdbk = params->gain_cdbk + 3*gain_cdbk_size*cdbk_offset;
pitch = speex_bits_unpack_unsigned(bits, params->pitch_bits);
pitch += start;
gain_index = speex_bits_unpack_unsigned(bits, params->gain_bits);
/*printf ("decode pitch: %d %d\n", pitch, gain_index);*/
#ifdef FIXED_POINT
gain[0] = 32+(spx_word16_t)gain_cdbk[gain_index*3];
gain[1] = 32+(spx_word16_t)gain_cdbk[gain_index*3+1];
gain[2] = 32+(spx_word16_t)gain_cdbk[gain_index*3+2];
#else
gain[0] = 0.015625*gain_cdbk[gain_index*3]+.5;
gain[1] = 0.015625*gain_cdbk[gain_index*3+1]+.5;
gain[2] = 0.015625*gain_cdbk[gain_index*3+2]+.5;
#endif
if (count_lost && pitch > subframe_offset)
{
float gain_sum;
if (1) {
float tmp = count_lost < 4 ? GAIN_SCALING_1*last_pitch_gain : 0.4 * GAIN_SCALING_1 * last_pitch_gain;
if (tmp>.95)
tmp=.95;
gain_sum = GAIN_SCALING_1*gain_3tap_to_1tap(gain);
if (gain_sum > tmp) {
float fact = tmp/gain_sum;
for (i=0;i<3;i++)
gain[i]*=fact;
}
}
}
*pitch_val = pitch;
gain_val[0]=gain[0];
gain_val[1]=gain[1];
gain_val[2]=gain[2];
{
spx_sig_t *e[3];
VARDECL(spx_sig_t *tmp2);
ALLOC(tmp2, 3*nsf, spx_sig_t);
e[0]=tmp2;
e[1]=tmp2+nsf;
e[2]=tmp2+2*nsf;
for (i=0;i<3;i++)
{
int j;
int pp=pitch+1-i;
#if 0
for (j=0;j<nsf;j++)
{
if (j-pp<0)
e[i][j]=exc[j-pp];
else if (j-pp-pitch<0)
e[i][j]=exc[j-pp-pitch];
else
e[i][j]=0;
}
#else
{
int tmp1, tmp3;
tmp1=nsf;
if (tmp1>pp)
tmp1=pp;
for (j=0;j<tmp1;j++)
e[i][j]=exc[j-pp];
tmp3=nsf;
if (tmp3>pp+pitch)
tmp3=pp+pitch;
for (j=tmp1;j<tmp3;j++)
e[i][j]=exc[j-pp-pitch];
for (j=tmp3;j<nsf;j++)
e[i][j]=0;
}
#endif
}
#ifdef FIXED_POINT
{
for (i=0;i<nsf;i++)
exc[i]=SHL32(ADD32(ADD32(MULT16_32_Q15(SHL16(gain[0],7),e[2][i]), MULT16_32_Q15(SHL16(gain[1],7),e[1][i])),
MULT16_32_Q15(SHL16(gain[2],7),e[0][i])), 2);
}
#else
for (i=0;i<nsf;i++)
exc[i]=VERY_SMALL+gain[0]*e[2][i]+gain[1]*e[1][i]+gain[2]*e[0][i];
#endif
}
}
/** Forced pitch delay and gain */
int forced_pitch_quant(
spx_sig_t target[], /* Target vector */
spx_sig_t *sw,
spx_coef_t ak[], /* LPCs for this subframe */
spx_coef_t awk1[], /* Weighted LPCs #1 for this subframe */
spx_coef_t awk2[], /* Weighted LPCs #2 for this subframe */
spx_sig_t exc[], /* Excitation */
const void *par,
int start, /* Smallest pitch value allowed */
int end, /* Largest pitch value allowed */
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
int p, /* Number of LPC coeffs */
int nsf, /* Number of samples in subframe */
SpeexBits *bits,
char *stack,
spx_sig_t *exc2,
spx_word16_t *r,
int complexity,
int cdbk_offset,
int plc_tuning
)
{
int i;
float coef = GAIN_SCALING_1*pitch_coef;
if (coef>.99)
coef=.99;
for (i=0;i<nsf;i++)
{
exc[i]=exc[i-start]*coef;
}
return start;
}
/** Unquantize forced pitch delay and gain */
void forced_pitch_unquant(
spx_sig_t exc[], /* Excitation */
int start, /* Smallest pitch value allowed */
int end, /* Largest pitch value allowed */
spx_word16_t pitch_coef, /* Voicing (pitch) coefficient */
const void *par,
int nsf, /* Number of samples in subframe */
int *pitch_val,
spx_word16_t *gain_val,
SpeexBits *bits,
char *stack,
int count_lost,
int subframe_offset,
spx_word16_t last_pitch_gain,
int cdbk_offset
)
{
int i;
float coef = GAIN_SCALING_1*pitch_coef;
if (coef>.99)
coef=.99;
for (i=0;i<nsf;i++)
{
exc[i]=exc[i-start]*coef;
}
*pitch_val = start;
gain_val[0]=gain_val[2]=0;
gain_val[1] = pitch_coef;
}