1
0
Fork 0
flightgear/src/Main/viewer_rph.cxx
2001-03-24 06:03:11 +00:00

345 lines
10 KiB
C++

// viewer_rph.cxx -- class for managing a Roll/Pitch/Heading viewer in
// the flightgear world.
//
// Written by Curtis Olson, started August 1997.
// overhaul started October 2000.
//
// Copyright (C) 1997 - 2000 Curtis L. Olson - curt@flightgear.org
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// $Id$
#include <simgear/compiler.h>
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <plib/ssg.h> // plib include
#include <simgear/constants.h>
#include <simgear/debug/logstream.hxx>
#include <simgear/math/point3d.hxx>
#include <simgear/math/polar3d.hxx>
#include <simgear/math/vector.hxx>
#include <Scenery/scenery.hxx>
#include "globals.hxx"
#include "viewer_rph.hxx"
// Constructor
FGViewerRPH::FGViewerRPH( void )
{
set_reverse_view_offset(false);
#ifndef USE_FAST_VIEWROT
// This never changes -- NHV
LARC_TO_SSG[0][0] = 0.0;
LARC_TO_SSG[0][1] = 1.0;
LARC_TO_SSG[0][2] = -0.0;
LARC_TO_SSG[0][3] = 0.0;
LARC_TO_SSG[1][0] = 0.0;
LARC_TO_SSG[1][1] = 0.0;
LARC_TO_SSG[1][2] = 1.0;
LARC_TO_SSG[1][3] = 0.0;
LARC_TO_SSG[2][0] = 1.0;
LARC_TO_SSG[2][1] = -0.0;
LARC_TO_SSG[2][2] = 0.0;
LARC_TO_SSG[2][3] = 0.0;
LARC_TO_SSG[3][0] = 0.0;
LARC_TO_SSG[3][1] = 0.0;
LARC_TO_SSG[3][2] = 0.0;
LARC_TO_SSG[3][3] = 1.0;
#endif // USE_FAST_VIEWROT
}
#define USE_FAST_VIEWROT
#ifdef USE_FAST_VIEWROT
// VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET )
// This takes advantage of the fact that VIEWo and VIEW_OFFSET
// only have entries in the upper 3x3 block
// and that LARC_TO_SSG is just a shift of rows NHV
inline static void fgMakeViewRot( sgMat4 dst, const sgMat4 m1, const sgMat4 m2 )
{
for ( int j = 0 ; j < 3 ; j++ ) {
dst[2][j] = m2[0][0] * m1[0][j] +
m2[0][1] * m1[1][j] +
m2[0][2] * m1[2][j];
dst[0][j] = m2[1][0] * m1[0][j] +
m2[1][1] * m1[1][j] +
m2[1][2] * m1[2][j];
dst[1][j] = m2[2][0] * m1[0][j] +
m2[2][1] * m1[1][j] +
m2[2][2] * m1[2][j];
}
dst[0][3] =
dst[1][3] =
dst[2][3] =
dst[3][0] =
dst[3][1] =
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE;
}
#endif
#define USE_FAST_LOCAL
#ifdef USE_FAST_LOCAL
inline static void fgMakeLOCAL( sgMat4 dst, const double Theta,
const double Phi, const double Psi)
{
SGfloat cosTheta = (SGfloat) cos(Theta);
SGfloat sinTheta = (SGfloat) sin(Theta);
SGfloat cosPhi = (SGfloat) cos(Phi);
SGfloat sinPhi = (SGfloat) sin(Phi);
SGfloat sinPsi = (SGfloat) sin(Psi) ;
SGfloat cosPsi = (SGfloat) cos(Psi) ;
dst[0][0] = cosPhi * cosTheta;
dst[0][1] = sinPhi * cosPsi + cosPhi * -sinTheta * -sinPsi;
dst[0][2] = sinPhi * sinPsi + cosPhi * -sinTheta * cosPsi;
dst[0][3] = SG_ZERO;
dst[1][0] = -sinPhi * cosTheta;
dst[1][1] = cosPhi * cosPsi + -sinPhi * -sinTheta * -sinPsi;
dst[1][2] = cosPhi * sinPsi + -sinPhi * -sinTheta * cosPsi;
dst[1][3] = SG_ZERO ;
dst[2][0] = sinTheta;
dst[2][1] = cosTheta * -sinPsi;
dst[2][2] = cosTheta * cosPsi;
dst[2][3] = SG_ZERO;
dst[3][0] = SG_ZERO;
dst[3][1] = SG_ZERO;
dst[3][2] = SG_ZERO;
dst[3][3] = SG_ONE ;
}
#endif
// convert sgMat4 to MAT3 and print
static void print_sgMat4( sgMat4 &in) {
int i, j;
for ( i = 0; i < 4; i++ ) {
for ( j = 0; j < 4; j++ ) {
printf("%10.4f ", in[i][j]);
}
cout << endl;
}
}
// Update the view parameters
void FGViewerRPH::update() {
Point3D tmp;
sgVec3 minus_z, forward;
sgMat4 VIEWo;
// calculate the cartesion coords of the current lat/lon/0 elev
Point3D p = Point3D( geod_view_pos[0],
geod_view_pos[1],
sea_level_radius );
tmp = sgPolarToCart3d(p) - scenery.center;
sgSetVec3( zero_elev, tmp[0], tmp[1], tmp[2] );
// calculate view position in current FG view coordinate system
// p.lon & p.lat are already defined earlier, p.radius was set to
// the sea level radius, so now we add in our altitude.
if ( geod_view_pos[2] > (scenery.cur_elev + 0.5 * SG_METER_TO_FEET) ) {
p.setz( p.radius() + geod_view_pos[2] );
} else {
p.setz( p.radius() + scenery.cur_elev + 0.5 * SG_METER_TO_FEET );
}
tmp = sgPolarToCart3d(p);
sgdSetVec3( abs_view_pos, tmp[0], tmp[1], tmp[2] );
// view_pos = abs_view_pos - scenery.center;
sgdVec3 sc;
sgdSetVec3( sc, scenery.center.x(), scenery.center.y(), scenery.center.z());
sgdVec3 vp;
sgdSubVec3( vp, abs_view_pos, sc );
sgSetVec3( view_pos, vp );
SG_LOG( SG_VIEW, SG_DEBUG, "sea level radius = " << sea_level_radius );
SG_LOG( SG_VIEW, SG_DEBUG, "Polar view pos = " << p );
SG_LOG( SG_VIEW, SG_DEBUG, "Absolute view pos = "
<< abs_view_pos[0] << ","
<< abs_view_pos[1] << ","
<< abs_view_pos[2] );
SG_LOG( SG_VIEW, SG_DEBUG, "(RPH) Relative view pos = "
<< view_pos[0] << "," << view_pos[1] << "," << view_pos[2] );
// code to calculate LOCAL matrix calculated from Phi, Theta, and
// Psi (roll, pitch, yaw) in case we aren't running LaRCsim as our
// flight model
#ifdef USE_FAST_LOCAL
fgMakeLOCAL( LOCAL, rph[1], rph[0], -rph[2] );
#else // USE_TEXT_BOOK_METHOD
sgVec3 rollvec;
sgSetVec3( rollvec, 0.0, 0.0, 1.0 );
sgMat4 PHI; // roll
sgMakeRotMat4( PHI, rph[0] * SGD_RADIANS_TO_DEGREES, rollvec );
sgVec3 pitchvec;
sgSetVec3( pitchvec, 0.0, 1.0, 0.0 );
sgMat4 THETA; // pitch
sgMakeRotMat4( THETA, rph[1] * SGD_RADIANS_TO_DEGREES, pitchvec );
// ROT = PHI * THETA
sgMat4 ROT;
// sgMultMat4( ROT, PHI, THETA );
sgCopyMat4( ROT, PHI );
sgPostMultMat4( ROT, THETA );
sgVec3 yawvec;
sgSetVec3( yawvec, 1.0, 0.0, 0.0 );
sgMat4 PSI; // heading
sgMakeRotMat4( PSI, -rph[2] * SGD_RADIANS_TO_DEGREES, yawvec );
// LOCAL = ROT * PSI
// sgMultMat4( LOCAL, ROT, PSI );
sgCopyMat4( LOCAL, ROT );
sgPostMultMat4( LOCAL, PSI );
#endif // USE_FAST_LOCAL
// cout << "LOCAL matrix" << endl;
// print_sgMat4( LOCAL );
sgMakeRotMat4( UP,
geod_view_pos[0] * SGD_RADIANS_TO_DEGREES,
0.0,
-geod_view_pos[1] * SGD_RADIANS_TO_DEGREES );
sgSetVec3( world_up, UP[0][0], UP[0][1], UP[0][2] );
// sgXformVec3( world_up, UP );
// cout << "World Up = " << world_up[0] << "," << world_up[1] << ","
// << world_up[2] << endl;
// Alternative method to Derive world up vector based on
// *geodetic* coordinates
// alt_up = sgPolarToCart(FG_Longitude, FG_Latitude, 1.0);
// printf( " Alt Up = (%.4f, %.4f, %.4f)\n",
// alt_up.x, alt_up.y, alt_up.z);
// VIEWo = LOCAL * UP
// sgMultMat4( VIEWo, LOCAL, UP );
sgCopyMat4( VIEWo, LOCAL );
sgPostMultMat4( VIEWo, UP );
// cout << "VIEWo matrix" << endl;
// print_sgMat4( VIEWo );
// generate the sg view up and forward vectors
sgSetVec3( view_up, VIEWo[0][0], VIEWo[0][1], VIEWo[0][2] );
// cout << "view = " << view[0] << ","
// << view[1] << "," << view[2] << endl;
sgSetVec3( forward, VIEWo[2][0], VIEWo[2][1], VIEWo[2][2] );
// cout << "forward = " << forward[0] << ","
// << forward[1] << "," << forward[2] << endl;
// generate the pilot offset vector in world coordinates
sgVec3 pilot_offset_world;
sgSetVec3( pilot_offset_world,
pilot_offset[2], pilot_offset[1], -pilot_offset[0] );
sgXformVec3( pilot_offset_world, pilot_offset_world, VIEWo );
// generate the view offset matrix
sgMakeRotMat4( VIEW_OFFSET, view_offset * SGD_RADIANS_TO_DEGREES, view_up );
// cout << "VIEW_OFFSET matrix" << endl;
// print_sgMat4( VIEW_OFFSET );
sgXformVec3( view_forward, forward, VIEW_OFFSET );
SG_LOG( SG_VIEW, SG_DEBUG, "(RPH) view forward = "
<< view_forward[0] << "," << view_forward[1] << ","
<< view_forward[2] );
// VIEW_ROT = LARC_TO_SSG * ( VIEWo * VIEW_OFFSET )
#ifdef USE_FAST_VIEWROT
fgMakeViewRot( VIEW_ROT, VIEW_OFFSET, VIEWo );
#else
// sgMultMat4( VIEW_ROT, VIEW_OFFSET, VIEWo );
// sgPreMultMat4( VIEW_ROT, LARC_TO_SSG );
sgCopyMat4( VIEW_ROT, VIEWo );
sgPostMultMat4( VIEW_ROT, VIEW_OFFSET );
sgPreMultMat4( VIEW_ROT, LARC_TO_SSG );
#endif
// cout << "VIEW_ROT matrix" << endl;
// print_sgMat4( VIEW_ROT );
sgVec3 trans_vec;
sgAddVec3( trans_vec, view_pos, pilot_offset_world );
// VIEW = VIEW_ROT * TRANS
sgCopyMat4( VIEW, VIEW_ROT );
sgPostMultMat4ByTransMat4( VIEW, trans_vec );
//!!!!!!!!!!!!!!!!!!!
// THIS IS THE EXPERIMENTAL VIEWING ANGLE SHIFTER
// THE MAJORITY OF THE WORK IS DONE IN GUI.CXX
// this in gui.cxx for now just testing
extern float GuiQuat_mat[4][4];
sgPreMultMat4( VIEW, GuiQuat_mat);
// !!!!!!!!!! testing
// Given a vector pointing straight down (-Z), map into onto the
// local plane representing "horizontal". This should give us the
// local direction for moving "south".
sgSetVec3( minus_z, 0.0, 0.0, -1.0 );
sgmap_vec_onto_cur_surface_plane(world_up, view_pos, minus_z,
surface_south);
sgNormalizeVec3(surface_south);
// cout << "Surface direction directly south " << surface_south[0] << ","
// << surface_south[1] << "," << surface_south[2] << endl;
// now calculate the surface east vector
#define USE_FAST_SURFACE_EAST
#ifdef USE_FAST_SURFACE_EAST
sgVec3 world_down;
sgNegateVec3(world_down, world_up);
sgVectorProductVec3(surface_east, surface_south, world_down);
#else
sgMakeRotMat4( TMP, SGD_PI_2 * SGD_RADIANS_TO_DEGREES, world_up );
// cout << "sgMat4 TMP" << endl;
// print_sgMat4( TMP );
sgXformVec3(surface_east, surface_south, TMP);
#endif // USE_FAST_SURFACE_EAST
// cout << "Surface direction directly east " << surface_east[0] << ","
// << surface_east[1] << "," << surface_east[2] << endl;
// cout << "Should be close to zero = "
// << sgScalarProductVec3(surface_south, surface_east) << endl;
set_clean();
}
// Destructor
FGViewerRPH::~FGViewerRPH( void ) {
}