1
0
Fork 0
flightgear/src/FDM/JSBSim/FGState.cpp

641 lines
21 KiB
C++

/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Module: FGState.cpp
Author: Jon Berndt
Date started: 11/17/98
Called by: FGFDMExec and accessed by all models.
------------- Copyright (C) 1999 Jon S. Berndt (jsb@hal-pc.org) -------------
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.
Further information about the GNU General Public License can also be found on
the world wide web at http://www.gnu.org.
FUNCTIONAL DESCRIPTION
--------------------------------------------------------------------------------
See header file.
HISTORY
--------------------------------------------------------------------------------
11/17/98 JSB Created
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INCLUDES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
#ifdef FGFS
# include <simgear/compiler.h>
# include <math.h>
#else
# if defined(sgi) && !defined(__GNUC__)
# include <math.h>
# else
# include <cmath>
# endif
#endif
#ifdef _WIN32
#define snprintf _snprintf
#endif
#include "FGState.h"
static const char *IdSrc = "$Id$";
static const char *IdHdr = ID_STATE;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
MACROS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
//#define RegisterVariable(ID,DEF) coeffdef[#ID] = ID; paramdef[ID] = DEF
#define RegisterVariable(ID,DEF) coeffdef[#ID] = ID;
/*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CLASS IMPLEMENTATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%*/
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//
// For every term registered here there must be a corresponding handler in
// GetParameter() below that retrieves that parameter. Also, there must be an
// entry in the enum eParam definition in FGJSBBase.h. The ID is what must be used
// in any config file entry which references that item.
FGState::FGState(FGFDMExec* fdex)
{
FDMExec = fdex;
a = 1000.0;
sim_time = 0.0;
dt = 1.0/120.0;
ActiveEngine = -1;
Aircraft = FDMExec->GetAircraft();
Translation = FDMExec->GetTranslation();
Rotation = FDMExec->GetRotation();
Position = FDMExec->GetPosition();
FCS = FDMExec->GetFCS();
Output = FDMExec->GetOutput();
Atmosphere = FDMExec->GetAtmosphere();
Aerodynamics = FDMExec->GetAerodynamics();
GroundReactions = FDMExec->GetGroundReactions();
Propulsion = FDMExec->GetPropulsion();
PropertyManager = FDMExec->GetPropertyManager();
InitPropertyMaps();
bind();
Debug(0);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGState::~FGState()
{
unbind();
Debug(1);
}
//***************************************************************************
//
// Reset: Assume all angles READ FROM FILE IN DEGREES !!
//
bool FGState::Reset(string path, string acname, string fname)
{
string resetDef;
string token="";
double U, V, W;
double phi, tht, psi;
double latitude, longitude, h;
double wdir, wmag, wnorth, weast;
# ifndef macintosh
resetDef = path + "/" + acname + "/" + fname + ".xml";
# else
resetDef = path + ";" + acname + ";" + fname + ".xml";
# endif
FGConfigFile resetfile(resetDef);
if (!resetfile.IsOpen()) return false;
resetfile.GetNextConfigLine();
token = resetfile.GetValue();
if (token != string("initialize")) {
cerr << "The reset file " << resetDef
<< " does not appear to be a reset file" << endl;
return false;
} else {
resetfile.GetNextConfigLine();
resetfile >> token;
cout << "Resetting using: " << token << endl << endl;
}
while (token != string("/initialize") && token != string("EOF")) {
if (token == "UBODY") resetfile >> U;
if (token == "VBODY") resetfile >> V;
if (token == "WBODY") resetfile >> W;
if (token == "LATITUDE") resetfile >> latitude;
if (token == "LONGITUDE") resetfile >> longitude;
if (token == "PHI") resetfile >> phi;
if (token == "THETA") resetfile >> tht;
if (token == "PSI") resetfile >> psi;
if (token == "ALTITUDE") resetfile >> h;
if (token == "WINDDIR") resetfile >> wdir;
if (token == "VWIND") resetfile >> wmag;
resetfile >> token;
}
Position->SetLatitude(latitude*degtorad);
Position->SetLongitude(longitude*degtorad);
Position->Seth(h);
wnorth = wmag*ktstofps*cos(wdir*degtorad);
weast = wmag*ktstofps*sin(wdir*degtorad);
Initialize(U, V, W, phi*degtorad, tht*degtorad, psi*degtorad,
latitude*degtorad, longitude*degtorad, h, wnorth, weast, 0.0);
return true;
}
//***************************************************************************
//
// Initialize: Assume all angles GIVEN IN RADIANS !!
//
void FGState::Initialize(double U, double V, double W,
double phi, double tht, double psi,
double Latitude, double Longitude, double H,
double wnorth, double weast, double wdown)
{
double alpha, beta;
double qbar, Vt;
FGColumnVector3 vAeroUVW;
Position->SetLatitude(Latitude);
Position->SetLongitude(Longitude);
Position->Seth(H);
Atmosphere->Run();
vLocalEuler << phi << tht << psi;
Rotation->SetEuler(vLocalEuler);
InitMatrices(phi, tht, psi);
vUVW << U << V << W;
Translation->SetUVW(vUVW);
Atmosphere->SetWindNED(wnorth, weast, wdown);
vAeroUVW = vUVW + mTl2b*Atmosphere->GetWindNED();
if (vAeroUVW(eW) != 0.0)
alpha = vAeroUVW(eU)*vAeroUVW(eU) > 0.0 ? atan2(vAeroUVW(eW), vAeroUVW(eU)) : 0.0;
else
alpha = 0.0;
if (vAeroUVW(eV) != 0.0)
beta = vAeroUVW(eU)*vAeroUVW(eU)+vAeroUVW(eW)*vAeroUVW(eW) > 0.0 ? atan2(vAeroUVW(eV), (fabs(vAeroUVW(eU))/vAeroUVW(eU))*sqrt(vAeroUVW(eU)*vAeroUVW(eU) + vAeroUVW(eW)*vAeroUVW(eW))) : 0.0;
else
beta = 0.0;
Translation->SetAB(alpha, beta);
Vt = sqrt(U*U + V*V + W*W);
Translation->SetVt(Vt);
Translation->SetMach(Vt/Atmosphere->GetSoundSpeed());
qbar = 0.5*(U*U + V*V + W*W)*Atmosphere->GetDensity();
Translation->Setqbar(qbar);
vLocalVelNED = mTb2l*vUVW;
Position->SetvVel(vLocalVelNED);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::Initialize(FGInitialCondition *FGIC)
{
double tht,psi,phi;
double U, V, W, h;
double latitude, longitude;
double wnorth,weast, wdown;
latitude = FGIC->GetLatitudeRadIC();
longitude = FGIC->GetLongitudeRadIC();
h = FGIC->GetAltitudeFtIC();
U = FGIC->GetUBodyFpsIC();
V = FGIC->GetVBodyFpsIC();
W = FGIC->GetWBodyFpsIC();
tht = FGIC->GetThetaRadIC();
phi = FGIC->GetPhiRadIC();
psi = FGIC->GetPsiRadIC();
wnorth = FGIC->GetWindNFpsIC();
weast = FGIC->GetWindEFpsIC();
wdown = FGIC->GetWindDFpsIC();
Position->SetSeaLevelRadius( FGIC->GetSeaLevelRadiusFtIC() );
Position->SetRunwayRadius( FGIC->GetSeaLevelRadiusFtIC() +
FGIC->GetTerrainAltitudeFtIC() );
// need to fix the wind speed args, here.
Initialize(U, V, W, phi, tht, psi, latitude, longitude, h, wnorth, weast, wdown);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::InitMatrices(double phi, double tht, double psi)
{
double thtd2, psid2, phid2;
double Sthtd2, Spsid2, Sphid2;
double Cthtd2, Cpsid2, Cphid2;
double Cphid2Cthtd2;
double Cphid2Sthtd2;
double Sphid2Sthtd2;
double Sphid2Cthtd2;
thtd2 = tht/2.0;
psid2 = psi/2.0;
phid2 = phi/2.0;
Sthtd2 = sin(thtd2);
Spsid2 = sin(psid2);
Sphid2 = sin(phid2);
Cthtd2 = cos(thtd2);
Cpsid2 = cos(psid2);
Cphid2 = cos(phid2);
Cphid2Cthtd2 = Cphid2*Cthtd2;
Cphid2Sthtd2 = Cphid2*Sthtd2;
Sphid2Sthtd2 = Sphid2*Sthtd2;
Sphid2Cthtd2 = Sphid2*Cthtd2;
vQtrn(1) = Cphid2Cthtd2*Cpsid2 + Sphid2Sthtd2*Spsid2;
vQtrn(2) = Sphid2Cthtd2*Cpsid2 - Cphid2Sthtd2*Spsid2;
vQtrn(3) = Cphid2Sthtd2*Cpsid2 + Sphid2Cthtd2*Spsid2;
vQtrn(4) = Cphid2Cthtd2*Spsid2 - Sphid2Sthtd2*Cpsid2;
CalcMatrices();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::CalcMatrices(void)
{
double Q0Q0, Q1Q1, Q2Q2, Q3Q3;
double Q0Q1, Q0Q2, Q0Q3, Q1Q2;
double Q1Q3, Q2Q3;
Q0Q0 = vQtrn(1)*vQtrn(1);
Q1Q1 = vQtrn(2)*vQtrn(2);
Q2Q2 = vQtrn(3)*vQtrn(3);
Q3Q3 = vQtrn(4)*vQtrn(4);
Q0Q1 = vQtrn(1)*vQtrn(2);
Q0Q2 = vQtrn(1)*vQtrn(3);
Q0Q3 = vQtrn(1)*vQtrn(4);
Q1Q2 = vQtrn(2)*vQtrn(3);
Q1Q3 = vQtrn(2)*vQtrn(4);
Q2Q3 = vQtrn(3)*vQtrn(4);
mTl2b(1,1) = Q0Q0 + Q1Q1 - Q2Q2 - Q3Q3;
mTl2b(1,2) = 2*(Q1Q2 + Q0Q3);
mTl2b(1,3) = 2*(Q1Q3 - Q0Q2);
mTl2b(2,1) = 2*(Q1Q2 - Q0Q3);
mTl2b(2,2) = Q0Q0 - Q1Q1 + Q2Q2 - Q3Q3;
mTl2b(2,3) = 2*(Q2Q3 + Q0Q1);
mTl2b(3,1) = 2*(Q1Q3 + Q0Q2);
mTl2b(3,2) = 2*(Q2Q3 - Q0Q1);
mTl2b(3,3) = Q0Q0 - Q1Q1 - Q2Q2 + Q3Q3;
mTb2l = mTl2b;
mTb2l.T();
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::IntegrateQuat(FGColumnVector3 vPQR, int rate)
{
vQdot(1) = -0.5*(vQtrn(2)*vPQR(eP) + vQtrn(3)*vPQR(eQ) + vQtrn(4)*vPQR(eR));
vQdot(2) = 0.5*(vQtrn(1)*vPQR(eP) + vQtrn(3)*vPQR(eR) - vQtrn(4)*vPQR(eQ));
vQdot(3) = 0.5*(vQtrn(1)*vPQR(eQ) + vQtrn(4)*vPQR(eP) - vQtrn(2)*vPQR(eR));
vQdot(4) = 0.5*(vQtrn(1)*vPQR(eR) + vQtrn(2)*vPQR(eQ) - vQtrn(3)*vPQR(eP));
vQtrn += 0.5*dt*rate*(vlastQdot + vQdot);
vQtrn.Normalize();
vlastQdot = vQdot;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGColumnVector3& FGState::CalcEuler(void)
{
if (mTl2b(3,3) == 0.0) mTl2b(3,3) = 0.0000001;
if (mTl2b(1,1) == 0.0) mTl2b(1,1) = 0.0000001;
vEuler(ePhi) = atan2(mTl2b(2,3), mTl2b(3,3));
vEuler(eTht) = asin(-mTl2b(1,3));
vEuler(ePsi) = atan2(mTl2b(1,2), mTl2b(1,1));
if (vEuler(ePsi) < 0.0) vEuler(ePsi) += 2*M_PI;
return vEuler;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGMatrix33& FGState::GetTs2b(void)
{
double ca, cb, sa, sb;
double alpha = Translation->Getalpha();
double beta = Translation->Getbeta();
ca = cos(alpha);
sa = sin(alpha);
cb = cos(beta);
sb = sin(beta);
mTs2b(1,1) = ca*cb;
mTs2b(1,2) = -ca*sb;
mTs2b(1,3) = -sa;
mTs2b(2,1) = sb;
mTs2b(2,2) = cb;
mTs2b(2,3) = 0.0;
mTs2b(3,1) = sa*cb;
mTs2b(3,2) = -sa*sb;
mTs2b(3,3) = ca;
return mTs2b;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
FGMatrix33& FGState::GetTb2s(void)
{
float alpha,beta;
float ca, cb, sa, sb;
alpha = Translation->Getalpha();
beta = Translation->Getbeta();
ca = cos(alpha);
sa = sin(alpha);
cb = cos(beta);
sb = sin(beta);
mTb2s(1,1) = ca*cb;
mTb2s(1,2) = sb;
mTb2s(1,3) = sa*cb;
mTb2s(2,1) = -ca*sb;
mTb2s(2,2) = cb;
mTb2s(2,3) = -sa*sb;
mTb2s(3,1) = -sa;
mTb2s(3,2) = 0.0;
mTb2s(3,3) = ca;
return mTb2s;
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::ReportState(void)
{
#if !defined(__BORLANDCPP__)
char out[80], flap[10], gear[12];
cout << endl << " JSBSim State" << endl;
snprintf(out,80," Weight: %7.0f lbs. CG: %5.1f, %5.1f, %5.1f inches\n",
FDMExec->GetMassBalance()->GetWeight(),
FDMExec->GetMassBalance()->GetXYZcg(1),
FDMExec->GetMassBalance()->GetXYZcg(2),
FDMExec->GetMassBalance()->GetXYZcg(3));
cout << out;
if ( FCS->GetDfPos() <= 0.01)
snprintf(flap,10,"Up");
else
snprintf(flap,10,"%2.0f",FCS->GetDfPos());
if (FCS->GetGearPos() < 0.01)
snprintf(gear,12,"Up");
else if (FCS->GetGearPos() > 0.99)
snprintf(gear,12,"Down");
else
snprintf(gear,12,"In Transit");
snprintf(out,80, " Flaps: %3s Gear: %12s\n",flap,gear);
cout << out;
snprintf(out,80, " Speed: %4.0f KCAS Mach: %5.2f\n",
FDMExec->GetAuxiliary()->GetVcalibratedKTS(),
Translation->GetMach() );
cout << out;
snprintf(out,80, " Altitude: %7.0f ft. AGL Altitude: %7.0f ft.\n",
Position->Geth(),
Position->GetDistanceAGL() );
cout << out;
snprintf(out,80, " Angle of Attack: %6.2f deg Pitch Angle: %6.2f deg\n",
Translation->Getalpha()*radtodeg,
Rotation->Gettht()*radtodeg );
cout << out;
snprintf(out,80, " Flight Path Angle: %6.2f deg Climb Rate: %5.0f ft/min\n",
Position->GetGamma()*radtodeg,
Position->Gethdot()*60 );
cout << out;
snprintf(out,80, " Normal Load Factor: %4.2f g's Pitch Rate: %5.2f deg/s\n",
Aircraft->GetNlf(),
Rotation->GetPQR(2)*radtodeg );
cout << out;
snprintf(out,80, " Heading: %3.0f deg true Sideslip: %5.2f deg Yaw Rate: %5.2f deg/s\n",
Rotation->Getpsi()*radtodeg,
Translation->Getbeta()*radtodeg,
Rotation->GetPQR(3)*radtodeg );
cout << out;
snprintf(out,80, " Bank Angle: %5.2f deg Roll Rate: %5.2f deg/s\n",
Rotation->Getphi()*radtodeg,
Rotation->GetPQR(1)*radtodeg );
cout << out;
snprintf(out,80, " Elevator: %5.2f deg Left Aileron: %5.2f deg Rudder: %5.2f deg\n",
FCS->GetDePos(ofRad)*radtodeg,
FCS->GetDaLPos(ofRad)*radtodeg,
FCS->GetDrPos(ofRad)*radtodeg );
cout << out;
snprintf(out,80, " Throttle: %5.2f%c\n",
FCS->GetThrottlePos(0)*100,'%' );
cout << out;
snprintf(out,80, " Wind Components: %5.2f kts head wind, %5.2f kts cross wind\n",
FDMExec->GetAuxiliary()->GetHeadWind()*fpstokts,
FDMExec->GetAuxiliary()->GetCrossWind()*fpstokts );
cout << out;
snprintf(out,80, " Ground Speed: %4.0f knots , Ground Track: %3.0f deg true\n",
Position->GetVground()*fpstokts,
Position->GetGroundTrack()*radtodeg );
cout << out;
#endif
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::InitPropertyMaps(void)
{
ParamNameToProp[ "FG_TIME" ]="sim-time-sec";
ParamNameToProp[ "FG_QBAR" ]="aero/qbar-psf";
ParamNameToProp[ "FG_WINGAREA" ]="metrics/Sw-sqft";
ParamNameToProp[ "FG_WINGSPAN" ]="metrics/bw-ft";
ParamNameToProp[ "FG_CBAR" ]="metrics/cbarw-ft";
ParamNameToProp[ "FG_ALPHA" ]="aero/alpha-rad";
ParamNameToProp[ "FG_ALPHADOT" ]="aero/alphadot-rad_sec";
ParamNameToProp[ "FG_BETA" ]="aero/beta-rad";
ParamNameToProp[ "FG_ABETA" ]="aero/mag-beta-rad";
ParamNameToProp[ "FG_BETADOT" ]="aero/betadot-rad_sec";
ParamNameToProp[ "FG_PHI" ]="attitude/phi-rad";
ParamNameToProp[ "FG_THT" ]="attitude/theta-rad";
ParamNameToProp[ "FG_PSI" ]="attitude/psi-true-rad";
ParamNameToProp[ "FG_PITCHRATE" ]="velocities/q-rad_sec";
ParamNameToProp[ "FG_ROLLRATE" ]="velocities/p-rad_sec";
ParamNameToProp[ "FG_YAWRATE" ]="velocities/r-rad_sec";
ParamNameToProp[ "FG_AEROP" ]="velocities/p-aero-rad_sec";
ParamNameToProp[ "FG_AEROQ" ]="velocities/q-aero-rad_sec";
ParamNameToProp[ "FG_AEROR" ]="velocities/r-aero-rad_sec";
ParamNameToProp[ "FG_CL_SQRD" ]="aero/cl-squared-norm";
ParamNameToProp[ "FG_MACH" ]="velocities/mach-norm";
ParamNameToProp[ "FG_ALTITUDE" ]="position/h-sl-ft";
ParamNameToProp[ "FG_BI2VEL" ]="aero/bi2vel";
ParamNameToProp[ "FG_CI2VEL" ]="aero/ci2vel";
ParamNameToProp[ "FG_ELEVATOR_POS" ]="fcs/elevator-pos-rad";
ParamNameToProp[ "FG_AELEVATOR_POS" ]="fcs/mag-elevator-pos-rad";
ParamNameToProp[ "FG_NELEVATOR_POS" ]="fcs/elevator-pos-norm";
ParamNameToProp[ "FG_AILERON_POS" ]="fcs/left-aileron-pos-rad";
ParamNameToProp[ "FG_AAILERON_POS" ]="fcs/mag-aileron-pos-rad";
ParamNameToProp[ "FG_NAILERON_POS" ]="fcs/left-aileron-pos-norm";
ParamNameToProp[ "FG_LEFT_AILERON_POS" ]="fcs/left-aileron-pos-rad";
ParamNameToProp[ "FG_ALEFT_AILERON_POS" ]="fcs/mag-left-aileron-pos-rad";
ParamNameToProp[ "FG_NLEFT_AILERON_POS" ]="fcs/left-aileron-pos-norm";
ParamNameToProp[ "FG_RIGHT_AILERON_POS" ]="fcs/right-aileron-pos-rad";
ParamNameToProp[ "FG_ARIGHT_AILERON_POS" ]="fcs/mag-aileron-pos-rad";
ParamNameToProp[ "FG_NRIGHT_AILERON_POS" ]="fcs/right-aileron-pos-norm";
ParamNameToProp[ "FG_RUDDER_POS" ]="fcs/rudder-pos-rad";
ParamNameToProp[ "FG_ARUDDER_POS" ]="fcs/mag-rudder-pos-rad";
ParamNameToProp[ "FG_NRUDDER_POS" ]="fcs/rudder-pos-norm";
ParamNameToProp[ "FG_SPDBRAKE_POS" ]="fcs/speedbrake-pos-rad";
ParamNameToProp[ "FG_NSPDBRAKE_POS" ]="fcs/speedbrake-pos-norm";
ParamNameToProp[ "FG_SPOILERS_POS" ]="fcs/spoiler-pos-rad";
ParamNameToProp[ "FG_NSPOILERS_POS" ]="fcs/spoiler-pos-norm";
ParamNameToProp[ "FG_FLAPS_POS" ]="fcs/flap-pos-deg";
ParamNameToProp[ "FG_NFLAPS_POS" ]="fcs/flap-pos-norm";
ParamNameToProp[ "FG_ELEVATOR_CMD" ]="fcs/elevator-cmd-norm";
ParamNameToProp[ "FG_AILERON_CMD" ]="fcs/aileron-cmd-norm";
ParamNameToProp[ "FG_RUDDER_CMD" ]="fcs/rudder-cmd-norm";
ParamNameToProp[ "FG_SPDBRAKE_CMD" ]="fcs/speedbrake-cmd-norm";
ParamNameToProp[ "FG_SPOILERS_CMD" ]="fcs/spoiler-cmd-norm";
ParamNameToProp[ "FG_FLAPS_CMD" ]="fcs/flap-cmd-norm";
ParamNameToProp[ "FG_THROTTLE_CMD" ]="fcs/throttle-cmd-norm";
ParamNameToProp[ "FG_THROTTLE_POS" ]="fcs/throttle-pos-norm";
ParamNameToProp[ "FG_MIXTURE_CMD" ]="fcs/mixture-cmd-norm";
ParamNameToProp[ "FG_MIXTURE_POS" ]="fcs/mixture-pos-norm";
ParamNameToProp[ "FG_MAGNETO_CMD" ]="zero";
ParamNameToProp[ "FG_STARTER_CMD" ]="zero";
ParamNameToProp[ "FG_ACTIVE_ENGINE" ]="zero";
ParamNameToProp[ "FG_HOVERB" ]="aero/h_b-mac-ft";
ParamNameToProp[ "FG_PITCH_TRIM_CMD" ]="fcs/pitch-trim-cmd-norm";
ParamNameToProp[ "FG_YAW_TRIM_CMD" ]="fcs/yaw-trim-cmd-norm";
ParamNameToProp[ "FG_ROLL_TRIM_CMD" ]="fcs/roll-trim-cmd-norm";
ParamNameToProp[ "FG_LEFT_BRAKE_CMD" ]="zero";
ParamNameToProp[ "FG_CENTER_BRAKE_CMD" ]="zero";
ParamNameToProp[ "FG_RIGHT_BRAKE_CMD" ]="zero";
ParamNameToProp[ "FG_SET_LOGGING" ]="zero";
ParamNameToProp[ "FG_ALPHAH" ]="aero/alpha-rad";
ParamNameToProp[ "FG_ALPHAW" ]="aero/alpha-wing-rad";
ParamNameToProp[ "FG_LBARH" ]="metrics/lh-norm";
ParamNameToProp[ "FG_LBARV" ]="metrics/lv-norm";
ParamNameToProp[ "FG_HTAILAREA" ]="metrics/Sh-sqft";
ParamNameToProp[ "FG_VTAILAREA" ]="metrics/Sv-sqft";
ParamNameToProp[ "FG_VBARH" ]="metrics/vbarh-norm";
ParamNameToProp[ "FG_VBARV" ]="metrics/vbarv-norm";
ParamNameToProp[ "FG_GEAR_CMD" ]="gear/gear-cmd-norm";
ParamNameToProp[ "FG_GEAR_POS" ]="gear/gear-pos-norm";
ParamNameToProp[ "FG_HYSTPARM" ]="aero/stall-hyst-norm";
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::bind(void)
{
PropertyManager->Tie("sim-time-sec",this,
&FGState::Getsim_time);
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
void FGState::unbind(void)
{
PropertyManager->Untie("sim-time-sec");
}
//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
// The bitmasked value choices are as follows:
// unset: In this case (the default) JSBSim would only print
// out the normally expected messages, essentially echoing
// the config files as they are read. If the environment
// variable is not set, debug_lvl is set to 1 internally
// 0: This requests JSBSim not to output any messages
// whatsoever.
// 1: This value explicity requests the normal JSBSim
// startup messages
// 2: This value asks for a message to be printed out when
// a class is instantiated
// 4: When this value is set, a message is displayed when a
// FGModel object executes its Run() method
// 8: When this value is set, various runtime state variables
// are printed out periodically
// 16: When set various parameters are sanity checked and
// a message is printed out when they go out of bounds
void FGState::Debug(int from)
{
if (debug_lvl <= 0) return;
if (debug_lvl & 1) { // Standard console startup message output
if (from == 0) { // Constructor
}
}
if (debug_lvl & 2 ) { // Instantiation/Destruction notification
if (from == 0) cout << "Instantiated: FGState" << endl;
if (from == 1) cout << "Destroyed: FGState" << endl;
}
if (debug_lvl & 4 ) { // Run() method entry print for FGModel-derived objects
}
if (debug_lvl & 8 ) { // Runtime state variables
}
if (debug_lvl & 16) { // Sanity checking
}
if (debug_lvl & 64) {
if (from == 0) { // Constructor
cout << IdSrc << endl;
cout << IdHdr << endl;
}
}
}